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A novel biologically motivated face-recognition algorithm based on polar frequency is presented. Polar frequency descriptors are

extracted from face images by Fourier–Bessel transform (FBT). Next, the Euclidean distance between all images is computed

and each image is now represented by its dissimilarity to the other images. A pseudo-Fisher linear discriminant was built on this

dissimilarity space. The performance of discrete Fourier transform (DFT) descriptors and a combination of both feature types

was also evaluated. The algorithms were tested on a 40- and 1196-subjects face database (ORL and FERET, respectively). With

five images per subject in the training and test datasets, error rate on the ORL database was 3.8, 1.25, and 0.2% for the FBT, DFT,

and the combined classifier, respectively, as compared to 2.6% achieved by the best previous algorithm. The most informative

polar frequency features were concentrated at low-to-medium angular frequencies coupled to low radial frequencies. On the

FERET database, where an affine normalization preprocessing was applied, the FBT algorithm outperformed only the PCA in a

rank recognition test. However, it achieved performance comparable to state-of-the-art methods when evaluated by verification

tests. These results indicate the high informative value of the polar frequency content of face images in relation to recognition

and verification tasks and that the Cartesian frequency content can complement information about the subjects’ identity, but

possibly only when the images are not prenormalized. Possible implications for human face recognition are discussed.

Categories and Subject Descriptors: I.4 [Image Processing and Computer Vision]: Feature Measurement; Image Represen-

tation, Object Recognition; I5 [Pattern Recognition]: Feature Evaluation and Selection, Pattern Analysis, Computer Vision

General Terms: Face Recognition, Human Perception, Algorithms

Additional Key Words and Phrases: Fourier–Bessel transform, discrete Fourier transform

1. INTRODUCTION

Face recognition is a highly complex task due to the many possible variations of the same subject
in different conditions, like luminance and facial expressions, and the three-dimensional nature of
the head. Many developers of face-recognition algorithms adopted a biologically inspired approach
in solving this problem [for a review, see Calder et al. 2001], thus contributing both to understand
human face-processing and to build efficient face-recognition technologies. Recent developments in
the neurophysiology field inspired the development of a high-performance face-recognition approach
described in the present paper. The proposed approach is based on features that may be analogous to
those extracted by the human visual system (HVS) from the visual scene. In particular, we evaluated the
performance of a face-recognition algorithm whose primary features were the magnitude of Cartesian
or radial and angular components of images of faces. To the best of our knowledge, we show that
the proposed approach is comparable to the state-of-the-art algorithms tested on the same databases.
Possible implications for human face recognition are also discussed.
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2. BACKGROUND AND PREVIOUS WORKS

2.1 Spatial Analysis in Polar Coordinates

Most of the current face-recognition algorithms are based on feature extraction from a Cartesian per-
spective, typical to most analog and digital imaging systems. The primate visual system, on the other
hand, is known to process visual stimuli logarithmically. For example, biological evidences indicate that
the retinal image is retinothopically mapped onto area V1 of the visual cortex in a log-polar manner,
i.e., image representation in the cortex is negatively correlated with retinal cell eccentricity [Schwartz
1977]. This property led to a formulation of a spatial log-polar transformation [Schwartz 1980] in which
a Cartesian image was resampled as a logarithmic function of the distance from the center. This trans-
formation was explored by several feature-detection [Grove and Fisher 1996; Lim et al. 1997; Gomes and
Fisher 2003] and face-detection [Hotta et al. 1998; Jurie 1999; Chien and Choi, 2000] investigators. The
log-polar transformation was also used in face-recognition systems [Tistarelli and Grosso, 1998; Minut
et al. 2000; Escobar and Ruiz-de-Solar 2002; Smeraldi and Bigun 2002]. One of the disadvantages of
this feature-extraction method is the rough representation of peripheral regions. The HVS compensates
this effect by eye saccades, moving the fovea from one point to the other in the scene. Similar approach
was adopted by the face-recognition systems of Tistarelli and Gross [1998] and Smeraldi and Bigun
[2002]. Escobar and Ruiz-del-Solar [2002] applied the log-polar transformation at a single location, but
the subsequent step (Gabor jets filtering) required manual localization of 16 fiducial points in the face
image.

Although the previous algorithms that use log-polar transformation well simulate the retinal sam-
pling resolution, they are usually followed by local analysis and do not provide any information about
global patterns. An alternative representation of an image in the polar frequency domain is the two-
dimensional Fourier–Bessel transform [Bowman 1958; Rosental et al. 1982]. This transform found sev-
eral applications in analyzing patterns in a circular domain [Zwick and Zeitler 1973; Guan et al. 2001;
Fox et al. 2003], but was seldom exploited for image recognition. One of such rare examples is the work
of Cabrera et al. [1992], who applied the FBT to create descriptors of contour segments from images.

The paper is organized as follows: in the next section, we briefly introduce the reader to the primary
spatial processing by the HVS and to the main face-recognition algorithms tested on the face databases
used in our experiments. In Section 3 the discrete Fourier transform (DFT) and the Fourier–Bessel
Transform (FBT) for face-image analysis is described. The proposed face-recognition algorithms are
introduced in Section 4. We present the experimental results on two widely used face databases in
Section 5. In the last section, we discuss the results and ongoing work for possible future improvements.

2.2 Human Spatial Processing

In the early stages of the human visual processing, specialized neurons act as filters for the visual image.
Such neurons are tuned to specific spatial frequencies and locations in the visual field. The activity of
cortical simple cells is well described by linear models [De Valois and De Valois 1990; Itti et al. 2000].
However, the local information provided in the earlier cortical stages must be further processed to
extract global shape information. For instance, neurons in the inferotemporal cortex tuned to complex
shapes, such as faces, have been reported [Perret et al. 1982]. Moreover, the response of these face-
specific neurons was correlated with two-dimensional patterns, but not with three-dimensional shapes
or any internal configural relations of the pattern [Young and Yamane, 1992].

Since the pioneer work of Kelly [1960], who suggested probing the HVS with symmetrically circular
stimuli, many investigators of global shape processing in the early visual stages used circular shapes
and found evidence of polar visual form processing. Electrophysiological experiments showed that cells
in the LGN, V1, V2, and V4 cerebral areas in monkeys are specifically sensitive to Cartesian, polar, and
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Fig. 1. Examples of stimuli defined in four different coordinate systems. Upper row: Stimuli used to study the response specificity

of cells in the V4 cerebral area of monkeys [Gallant et al. 1996]. Lower row: Glass patterns used for measuring of the detectability

of dot patterns [Wilson and Wilkinson 1998].

hyperbolic stimuli [Gallant et al. 1993, 1996; Mahon and De Valois 2001]. Moreover, psychophysical
measurements of Glass dot patterns detection thresholds as a function of the stimulated area showed
global pooling of orientation information in the detection of angular and radial dot patterns [Wilson and
Wilkinson 1998]. Thus, it is evident that information regarding the global polar content of images is
effectively extracted by and available to the HVS. Examples of the stimuli used by these investigators
are presented in Figure 1.

Does polar form analysis help in face-recognition tasks? To answer this question we need to evaluate
the amount of information about the subject identity carried by polar components. Furthermore, we
have to verify that the information is actually used by the HVS to recognize faces. In the current paper,
we describe an attempt to answer the former question by developing a new efficient face-recognition
method.

2.3 Previous Face-Recognition Algorithms

One of the fastest and most used face-recognitions algorithms is the eigenfaces scheme [Turk and
Pentland, 1991]. The first eigenvectors (principal components) obtained from a set of training images
form the basic representation in that approach. Eigenfaces, the projection of the images onto these
eigenvectors, are used as classification features. At the testing stage, unlabeled (probe) images are
projected onto the eigenvector basis and compared to the learned images in the new face space. Principal
Component Analysis (PCA) was used to model facial expression recognition [Calder et al. 2001] and
several known face effects, like distinctiveness, caricature, and “other-race” [see Calder et al. 2001, for
a detailed review]. There is also an interesting interpretation of the eigenfaces algorithm related to
neurons specifically tuned to face images and to biological autoassociative memory models [Abdi 1988;
O’Toole et al. 1995]. The classic eigenfaces method is a good example of a global (holistic) algorithm, in
contrast to feature-based (local) algorithms, where the image is encoded as a whole. A major drawback
of the method is its requirement of a precise spatial normalization of the face parts, such that the eyes,
mouth, etc., are scaled and registered at the same spatial coordinates [Craw and Cameron 1991].

Also taking a holistic approach, Hafed and Levine [2001] explored the discrete cosine transform
(DCT) as a means of feature extraction for face classification. Analogous to the Fourier transform, the
DCT maps an image from the spatial to the frequency domain, extracting the frequency components.
However, it differs from the DFT in using only real coefficients. The biological appeal of the DCT features
lies in the spatial to (Cartesian) frequency domain transformation that is believed to occur in the HVS
[Campbell and Robson 1968].
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An algorithm developed in the University of Southern California proposed the Gabor wavelets image
transform as mean of feature extraction [Lades et al. 1993; Wiskott et al. 1997]. This transform can
be seen as analogous to the multiscale multiorientation spatial analysis observed in the V1 cortical
area [Hubel and Wiesel 1968; Movshon et al. 1978; De Valois et al. 1982]. In contrast to the global
analysis of the DCT, the Gabor wavelets features are extracted at fiducial points, corresponding to
anatomically identifiable nodes in a geometric model (graph) of the face. Probe images are projected
onto the Gabor jets and compared, through elastic graph matching, to the learned images based on both
the extracted coefficients at the corresponding locations and distances between the formed graphs. This
method requires manual definition of the grid structure, but a fully automatic version was published
recently [Arca et al. 2003].

Etemad and Chellappa [1997] used a hybrid approach in which images were initially represented by
facial features in the spatial domain as well as by the wavelet transform. In a second stage, new fea-
tures were extracted through linear discriminant analysis (LDA). In contrast to PCA, the features are
projected in LDA such that the (between-subjects variation)/(within-subjects variation) ratio is maxi-
mized. Moghaddam et al. [2000] proposed a Bayesian generalization of the LDA method where, instead
of matching images through a Euclidean-based similarity measurement, the a posteriori probability of
the difference between images is estimated considering the within- and between-subject variation in
the training set. All computations were done in a PCA dimensionality reduced space.

Lawrence et al. [1997] proposed a different hybrid algorithm that combined local image sampling,
a self-organizing map (SOM) neural network, and a convolutional neural network (CN). The SOM
provides a quantization of the image samples into a topological space, where inputs that are nearby in
the original space preserve proximity in the output space, while the CN network extracts successively
larger features in a hierarchical set of layers. The SOM topological mapping can be associated to the
retinotopic maps found in the visual cortex [Obermayer et al. 1991], while the hierarchical layers of
the CN networks are analogous to the multiscale spatial sampling of the HVS [De Valois and De Valois
1990].

As we expect our algorithm to be comparable not only from a biological perspective, but also from the
practical point-of-view, nonbiologically motivated algorithms are also cited here. One of these algorithms
was designed by Samaria and Harter [1994], being based on hidden Markov models (HMMs) of a spatial
top-down sampling. Samaria [1994] also published an extended version with pseudo two-dimensional
HMMs. Another algorithm of interest is the ARENA [Sim et al. 2000], based on dimensionality reduction
by simply averaging nonoverlapping regions in the images. It then matches training and probe images
basically by counting the number of components that differ in value (the L∗

p dissimilarity measurement).

3. IMAGE TRANSFORMS

3.1 Discrete Fourier Transform

Spatial frequency analysis in Cartesian coordinates is traditionally done by applying the two-
dimensional (2D) DFT and was already used for face recognition. For example, Akamatsu et al. [1991]
applied the eigenfaces method to the magnitude of the Fourier spectrum as a mean of reducing vari-
ability because of changes in head orientation and shifting. The DFT is a well-known analysis tool and
will be briefly described. The equation to compute the DFT on an M × N size image is

F (u, v) = 1√
MN

M−1∑
x=0

N−1∑
y=0

f (x, y)e− j 2π ( ux
M + vy

N )

where u and v are the coordinates in the Fourier domain and x and y the coordinates in the space
domain. The DFT deals with complex numbers that represent the magnitude and phase of the sine and
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Fig. 2. A plot of the Bessel functions of the first kind of order 0, 1, and 2.

cosine waves in the Fourier formula. However, in the present study, only the magnitude |F (u, v)| was
considered.

3.2 Fourier-Bessel Transform

Let f (x, y) be the face image. The FBT analysis starts by converting the image pixels description from
Cartesian (x, y) to polar (r, θ ) coordinates. Let (x0, y0) be the origin of the Cartesian image. The polar
coordinates necessary to obtain the new image representation f (r, θ ) are defined as

θ = tan−1

(
y − y0

x − x0

)
(1)

and

r =
√

(x − x0)2 + ( y − y0)2 (2)

For square images, the considered maximum radius was the distance from the center of the image to
one of the corners. Points outside the original image were discarded. Radial resolution was fixed at one
pixel width, but the angular resolution could be varied by increasing or reducing of the number of sam-
pled radii. The intensity of each point of the f (r, θ ) function was determined by bilinear interpolation,
combining the values of the four closest pixels weighted by their relative proximity to the reference
point [Pratt 1991]. Although this is a linear-polar transformation, in contrast to the aforementioned
log-polar transformation, the central area of the Cartesian image is more densely sampled than the
periphery. in practice, especially at the high angular resolution used in the current study, because of
the limited resolution and discrete nature of digital images,.

The FBT notation and definitions follow Bowman [1958] and Spanier and Oldham [1987]. The f (r, θ )
function is than represented by the Fourier–Bessel series. The Bessel function of the first kind of order
n is defined by

Jn(x) =
(x

2

)n ∞∑
k = 0

(
−x2

4

)k

k!�(n + k + 1)
(3)

where �(x) is the gamma function. Figure 2 shows a graphical representation of three Bessel functions.
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Fig. 3. Examples of FBT of (A) an eight radial cycles image, (B) a four angular cycles, (C) and an image of the average of these

images. Image size was 131 × 131 pixels. Angular resolution was 0.5◦. The modulus of the FBT coefficients is presented in colored

levels (red indicates the highest value).

The two-dimensional Fourier–Bessel series is defined as

f (r, θ ) =
∞∑

i=1

∞∑
n=1

An,i Jn(αn,i r) cos(nθ ) +
∞∑

i=1

∞∑
n=1

Bn, j Jn(αn,i r) sin(nθ ) (4)

where f (R, θ ) = 0 and 0 ≤ r ≤ R. αi is the ith root of the Jn function, i.e., the zero crossing value
satisfying Jn(αn, i) = 0. R is the radial distance to the edge of the image. The orthogonal coefficients
An,i and Bn, j are given by

A0,i = 1

π R2 J2
1(αn,i)

θ=2x∫
θ=0

r=R∫
r=0

f (r, θ )r Jn

(αn,i

R
r
)
drdθ if B0,i = 0 and n = 0 (5)

[
An, i
Bn, i

]
= 2

π R2 J2
n+1(αn,i)

θ=2π∫
θ=0

r=R∫
r=0

f (r, θ )r Jn

(αn,i

R
r
) [

cos(nθ )
sin(nθ )

]
drdθ if n > 0 (6)

Some FBT examples are presented in Figure 3. In the original images, a sine function is plotted in
radial (eight cycles per image) or angular (four cycles per 360˚) coordinates, and the third (right) image is
the average of both images. Firstly, we transformed the coordinates of the pixels from Cartesian to polar
using Eq. (1) and (2), with a 0.5˚ angular resolution (i.e., 720 radii). We calculated the coefficients A and
B using Eqs. (5) and (6), limiting n to 30 Bessel order and i to 30 Bessel root. These coefficients represent
the magnitude of a spatial variation in polar coordinates [Fox 2000; Guan et al. 2001]. For example,
the 0th order, 8th root, and 4th order, 1st root coefficients represent the magnitude of a pure eight
radial cycles or four angular cycles pattern, respectively. Similarly, the 4th order, 8th root coefficient
represents a pattern, which is the product of these two forms. The A and B coefficients represent the
same patterns, but in opposite phase. We plotted the modulus of A and B in Figure 3 for the sake of
better visualization. In this spectrum plot, the Bessel order columns represent the relative magnitude

ACM Transactions on Applied Perception, Vol. 3, No. 1, January 2006.



68 • Y. Zana and R. M. Cesar, Jr.

Fig. 4. FBT of a face image from the ORL database. Inverse transforms were derived from the full FB spectrum (upper image) or

only up to the 3rd Bessel root (lower image). The dashed line limits the FB coefficients used for the partial inverse transformation.

The lowest coefficient in the spectrum image was set to minimum in order to improve the visibility of the other coefficients.

of the angular frequency, while the Bessel root rows represent the radial frequency. It can be noted that
the FBT of the images correctly indicates the principal radial and angular components. The inverse
transform images can be calculated from the coefficient matrixes (not shown in the figure).

4. ALGORITHMS

4.1 Feature Extraction

Dataset handling, training, and tests were done with the Matlab PRTools toolbox [Duin 2000]. After a
preprocessing stage (detailed below), images were transformed by a FBT up to the 30th Bessel order
and 3rd root with angular resolution of 0.5˚, thus leading to 186 coefficients. DFT analysis extracted a
total of 1200 magnitude coefficients, corresponding to up to 19.5 cycles per image. The number of DFT
coefficients was determined by the optimal performance in preliminary tests on the ORL database.

Figure 4 shows an example of the FBT spectrum (extended to the 30th Bessel root) of a face image
from the ORL database [Samaria and Harter 1994]. The spectrum is relatively complex, but with
predominance of low-frequency components. From the blurred aspect of the face inverse transform using
all the coefficients, it can be noted that the FBT represents low to middle range, but not high, frequencies
well. This is a consequence of using a limited number of Bessel orders and roots. Increasing the number
of coefficients would widen the sampled frequency range, but also the computation time. However,
although the original image cannot be exactly reconstructed (Figure 4), only a limited frequency range
is necessary to achieve good recognition rates, as shown below. In the rest of this section, we will refer
to the Fourier or Fourier–Bessel transformed images as just images.

4.2 Dissimilarity Space

We built a dissimilarity space D(t, t) defined as the Euclidean distance between all training images,
where t is the training image. In this space, each object is represented by its dissimilarity to all objects
(Table I). This approach is based on the assumption that the dissimilarities of similar objects to “others”
is about the same. Dissimilarity space for pattern recognition was first formulated by Duin et al. [1997]
and successfully used with the pseudo-Fisher linear discriminant (PFLD) on the ORL face database
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Table I. An Example of a Dissimilarity Space

D(t, t)a

Image 1 Image 2 Image 3

Image 1 0.0 0.8 0.3

Image 2 0.8 0.0 0.5

Image 3 0.3 0.5 0.0

aThe value in each cell indicates the Euclidean distance between

the corresponding images. In this space, each image is repre-

sented by its dissimilarity to all images, i.e., by the values in

the corresponding column.

[Pekalska and Duin 2000]. However, while Pekalska and Duin [2000] represented the 256 × 256 (6,5536)
pixel intensity values in the dissimilarity space, we used 186 coefficients of the FBT. Among other
advantages of this representation space, by fixing the number of features (or dimensions) to the number
of objects, it avoids a phenomenon known as “peaking” [Raudys and Pikelis 1980], where recognition
performance is degraded as a consequence of small number of training samples, as compared to the
number of features.

4.3 Classifier and Testing

Test images were classified based on a PFLD using a two-class approach. A Fisher linear discrimi-
nant (FLD) is obtained by maximizing the Fisher criterion [Fukunaga 1990], i.e., the between subjects
variation/within subjects variation ratio. Here we used a minimum-square error classifier implemen-
tation [Scurichina and Duin 1996], which is known to be equivalent to the FLD for two-class problems
[Fukunaga, 1990]. In these cases, after shifting the data such that it has zero mean, the FLD can be
defined as

g (D(x, t)) =
[

D(x, t) − 1

2
(m1 − m2)

]T

S−1(m1 − m2) (7)

where D(x, t) is a probe image, S is the pooled covariance matrix, and mi stands for the mean of class
i = 1, 2. D(x, t) is classified as corresponding to class-1, if g [D(x, t)] ≥ 0 and to class-2 otherwise.
However, as the number of training objects and dimensions is the same in the dissimilarity space, the
sample estimation of the covariance matrix S becomes singular, and the classifier cannot be built. One
solution to the problem is to use a pseudo inverse and augmented vectors [Scurichina and Duin 1996].
Thus, Eq. (1) is replaced by

g (D(x, t)) = (D(x, t), 1)(D(t, t), I )(−1) (8)

where (D(x, t), I ) is the augmented vector to be classified and (D(t, t), I ) is the augmented training
set. The inverse (D(t, t), I )(−1) is the Moore-Penrose pseudo inverse which gives the minimum norm
solution. The pseudo inverse relies on the singular value decomposition of the matrix [D(t, t), I ] and
becomes the inverse of [D(t, t), I ] in the subspace spanned by the eigenvectors corresponding to the
nonzero eigenvalues. The classifier is found in this subspace [Pekalska and Duin 2000].

The current L-classes problem can be reduced and solved by the two-classes solution described above
[Allwein et al. 2000; Duin 2000]. The training set was splitt into L pairs of subsets, each pair consisting
of one subset with images from a single subject and a second subset formed from all the other images.
A PFLD was built for each pair of subsets. A probe image was tested on all L discriminant functions
and assigned to the subject that gave the largest posterior probability.

4.4 Combining Classifiers

The FBT- and DFT-based algorithms classified the test images independently. Although both orthog-
onal bases can lead to a perceptually good reconstruction, they encode different type of information
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Fig. 5. Block diagram of the three face-recognition algorithms: (A) FBT only, (B) DFT only, and (C) FBT + DFT through maximum

rule.

(Cartesian vs. polar frequency content). To evaluate the correlation between the classification errors
made by the two algorithms, the soft output of the classifiers were combined by a maximum rule before
labeling the images, i.e., the final assignment was determined by the classifier that gave the highest
normalized output [Kittler et al. 1998].

Figure 5 present a schematic description of the methods presented in this paper, i.e., (A) FBT only,
(B) DFT only, and (C) FBT + DFT through maximum rule.

5. EXPERIMENTAL RESULTS

We chose to test our algorithm on two distinct databases: the ORL [Samaria and Harter 1994] and
the FERET [Phillips et al. 1998]. The former is a small set with only 40 subjects. However, 10 sample
images from each subject, taken with small variations (see details below), are available. The FERET
set includes images from thousands of subjects, but only a few samples from each. Both datasets were
used as test platforms for many algorithms, making ranking comparisons easier.

5.1 The ORL Database

5.1.1 Database and Performance Evaluation. The ORL face database consists of 400 images col-
lected from 40 people. Most of the subjects were 20–35 years old. The face images were 92 × 112 pixels
with 8-bit gray levels. They included variations in facial expression, luminance, scale and viewing angle,
and were shot at different times. Limited side movement and tilt of the head were allowed. Subjects
were captured with and without glasses. These characteristics introduce difficulties to correct recogni-
tion and make the database particularly interesting. All images were manually cropped and rescaled to
the final resolution by the authors of the ORL database [Samaria and Harter 1994]. No further graph-
ical preprocessing was applied here. Figure 6 shows an example of an image set of one subject. Error
rate was calculated as the percentage of the misclassified images and each test was repeated 10 times.

5.1.2 General Performance and Learning Rate. Figure 7 shows the final error rates of the three
algorithms and a reproduction of results from previously published papers obtained with different
models, but where the same database, sampling and testing methodology were used [Samaria and
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Fig. 6. Images from one subject of the ORL database. There are variations in illumination, head position, facial expressions,

and occlusion.

Fig. 7. Error rate of FBT, DFT, and FBT + DFT algorithms. Training size was five images per subject. Error bars indicate ±1

standard error of the mean. Results of previous algorithms are from Samaria and Harter [1994] (Top-down HMM); Samaria

[1994] (Pseudo 2d-HMM); Lawrence et al. [1997] (Eigenfaces, PCA + CN, SOM + CN); Hafed and Levine [2001] (DCT); Sim et al.

[2000] (ARENA); Pekalska and Duin [2000] (RAW-PFLD).

Harter 1994; Samaria 1994; Lawrence et al. 1997; Sim et al. 2000; Pekalska and Duin 2000; Hafed and
Levine 2001]. With five images per subject, the FBT achieved a final performance of 3.8%, while the
DFT had an error rate of 1.25%. However, when the FBT algorithm and the DFT where combined, the
error rate was greatly reduced to 0.2%. This means that, on average, of every 500 test images, only
one was misclassified, which is an indication that the classification errors made by the FBT and DFT
are successfully complementary. The performance of the FBT is equal to that achieved by the SOM-CN
algorithm, but lower than that of the most successful methods (ARENA and RAW-PFLD). However, the
DFT and the FBT + DFT algorithms outperformed all the others.
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Fig. 8. Error rate as a function of the number of images learned from each subject. Error bars indicate ±1 standard error of the

mean. . Results of previous algorithms are from Lawrence et al. [1997] (Eigenfaces, PCA + CN, SOM + CN); Hafed and Levine

[2001] (DCT).

Figure 8 shows the error rate as a function of the number of images from each subject, i.e., the learning
rate. For all cases, the error rate decreases as the number of training samples increase, as expected,
since the increasing number of different samples from each subject increases the chances of correct
recognition when presented with a new image. The performance of both FBT and DFT algorithms, for
training sets of less than five images per subject, was superior to all previous algorithms tested in the
same modality. However, the combined FBT + DFT classifier again achieved the lowest error rate.

Lai et al. [2001] developed a face-recognition system based on a spectroface representation, i.e., a
wavelet transform and global Fourier invariant features, and presented results for the ORL database
[Lai et al. 2001]. Their system achieved a 5.36% error rate when the training set included three
images per subject. This performance falls between those of the FBT and DFT. However, their re-
sults are optimistically biased, as the three training images were selected so as to form the best face
representation.

5.1.3 Dataset Size Effect. The performance of face-recognition algorithms usually degrades as more
subjects are added to the database, because of the increasing probability of the presence of subjects with
similar attributes. This effect was confirmed with the models presented here (Figure 9). A comparable
test on the same database was available only for the the SOM + CN algorithm [Lawrence et al. 1997].
Again, the performance of the FBT, DFT and the combined classifier were found to be superior.

5.1.4 Performance of Individual Features. We have also analyzed the performance of the FBT and
DFT individual features. For this test, the number of extracted coefficients was extended. The training
and test sets were composed of five images per subject, each image represented by a single feature.
Recognition was based on a simple nearest-neighbor criterion, where a test image is assigned to the
subject of the closest training image. Figure 10 shows the error rates obtained by using each feature.
The highest performance for the FBT was obtained by coefficients in approximately the 0–20 Bessel
order range coupled to Bessel roots in the 1–6 range. This result indicates that angular components
of low-to-medium frequencies coupled to low-frequency radial components are the most informative
with respect to the subject identity. The observation that the necessary features for good recognition

ACM Transactions on Applied Perception, Vol. 3, No. 1, January 2006.



Face Recognition Based on Polar Frequency Features • 73

Fig. 9. Error rate as a function of the number of subjects in the database. Training set size was five images per person in all

cases. Error bars indicate ±1 standard error of the mean. Results for the SOM + CN algorithm are from Lawrence et al. [1997].

Fig. 10. Error rate, in colored levels, of individual features extracted by FBT (left panel) or (right panel) DFT. The DFT is

presented in a conventional polar plot, where distance from the center represents frequency and angle represents orientation.

Training size was five images per subject. Each pixel represents the average of 10 samples. The dashed white lines mark the

spectral regions that were used in the FBT and DFT algorithms.

performance are insufficient to reconstruct the original image (Figure 4) agrees with previous studies
[Turk and Pentland, 1991; Hafed and Levine, 2001] and does not violate any biological principle.

The DFT features presented a somewhat different behavior. The best performing features were dis-
tributed at all frequencies and orientations, although more concentrated in the low-frequency range
and horizontal orientation (y axis in the plot). This result may explain why the DFT algorithm re-
quires such an extensive number of features, as compared to the FBT, to achieve good recognition
levels.

5.2 The FERET Database

5.2.1 Database and Performance Evaluation. The FERET database was collected as part of the
Face-Recognition Technology program to support algorithm development and evaluation. The main
advantages of this database are the large number of individuals and rigid testing protocols that allow
precise performance comparisons between different algorithms. Basically, a “gallery” set of one frontal
view image from 1196 subjects is used to train the algorithm and a different dataset is used as probe.
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Fig. 11. Example of a normalization of two images taken from the same subject. The original images were scaled, aligned,

centralized, cropped, and masked.

All images are gray-scale 256 × 384 pixels size. For the current study, we used the largest probe set,
termed “FB,” which is constituted of a single image from 1195 subjects. The probe set images were
taken from the same subjects in the gallery set, after an interval of a few seconds, but with a different
facial expression.

The original images were normalized using the eyes ground-truth information supplied with the
database. Images were translated, rotated, and scaled so that the eyes were registered at specific
pixels. Next, the images were cropped to 118 × 140 pixels size and a mask was applied to remove most
of the hair and background (Figure 11). No histogram equalization or luminance normalization was
performed, once these operations showed no performance improvement in our tests (Figure 11).

The performance of the algorithms was evaluated by identification and verification tests according
to the FERET protocol [Phillips et al. 1998]. In the identification test, the algorithm ranks the gallery
images according to their similarity to the probe images. A good algorithm would give a low ranking
score to the correct matching images. For example, if the correct match of a probe image is among the
five most similar gallery images, the matching is ranked five. Results are plotted as the proportion of
correct identification as a function of the rank. Thus, the performance of an algorithm that matches 80
out of 100 probe images with ranking of five or less will be 80/10 = 0.8 at rank 5.

The verification test is based on an open-universe model. Given a gallery image g and a probe image
p, the algorithm verifies the claim that both were taken from the same subject, i.e., that p = g . The
verification probability Pv is the probability of the algorithm accepting the claim when it is true and
the false-alarm rate PF is the probability of incorrectly accepting a false claim. The algorithm decision
depends on a “confidence” (“posterior probability”) score si(k) given for each match and on a threshold c.
Thus, a claim is confirmed if si(k) ≤ c and rejected otherwise. A plot of all the combinations of PV
and PF as a function of c is known as a receiver-operating characteristic (ROC). For each probe image,
we computed the posterior probabilities for all the subjects in the gallery set and applied a threshold
function. The results were split to a subset that consisted of all matches, where p ≈ g and a second
subset with all matches where p 	= g . PV and PF were calculated as the number of confirmations
divided by the number of matches in each subset, respectively. This procedure was repeated for 100
equally spaced threshold levels.
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5.2.2 Face Identification and Verification. Figure 12(A) shows the correct identification rate as a
function of the rank for the proposed methods. In the same plot, we present results for the main
previous algorithms, as published in Phillips et al. [1998]. The performance of the FBT algorithm was
slightly superior to the basic PCA method, but lower than the state-of-the-art algorithms. In contrast
to the results on the ORL database, here the DFT algorithm performed significantly worse than the
FBT and no improvement was achieved by using the combined algorithm.

We also tested the proposed algorithms in a verification modality (Figure 12(B)). In this case, the FBT
algorithm outperformed the PCA and the PCA + Bayesian algorithms. It equaled the Gabor + EBGM
method at 0.005 false acceptance probability level, but did not reach the PCA + LDA performance. An
interesting performance indicator is the equal error rate, i. e., the point where incorrect rejection and
false alarm rates are equal. Figure 13 shows the results for the FBT algorithm in detail, while Table II
summarizes results from previous studies. A comparative analysis of the equal error rate shows an even
better performance of the FBT method: the error rate was lower than the PCA and PCA + Bayesian
algorithms, equal to the Gabor + EBGM, but higher that of the PCA + LDA method. Here again, the
DFT and the combined algorithm did not improve the performance over the FBT algorithm.

6. DISCUSSION

We introduced here a biologically motivated novel combination of techniques for face-recognition tasks.
The new algorithm achieved considerable performance, although not surpassing that of state-of-the-art
algorithms under all test conditions. We believe that it works because of the highly informative value
of the polar frequency components, the conservation of proximity relations in the dissimilarity space,
and by the efficient class separation provided by the linear discriminant.

6.1 Polar Frequency Domain

Although the relation of the present algorithm to human face recognition was not directly evaluated
here, a few associations can be made. As discussed in the introduction, there is clear evidence that the
HVS performs a Cartesian local analysis of the visual scene, but also pools this information to extract
global radial and angular shapes. A model of such spatial processing was developed by Wilson and
others [Wilson 1991; Wilson et al. 1997, 2001; Wilson and Wilkinson 1998, 2001]. Thus, in theory, the
global polar frequency content of face images is available to the HVS, in addition to the local Cartesian
frequency content.

In the current proposal, we explored an analogous global polar pooling by applying a FBT. The
analogy resides not in the way the Cartesian information is pooled to extract global components, but
in the coordinate definition of the fundamental global patterns. The face-recognition tests showed that
only as little as 186 components are required for good performance, demonstrating the compactness
of the polar representation. When tested on the ORL database, the FBT algorithm had achieved good
performance compared to previous algorithms, but had the best performance when combined with
a DFT-based algorithm. These results indicate coding of complementary information regarding face
identity by the two transformation types. However, when tested on the larger FERET database, no
performance gain was observed. These results suggest that the DFT contributed to the FBT performance
by compensating for image variations such as translation, considering that the ORL images were not
normalized, in contrast to the FERET images. This question should be addressed more specifically by
future research.

The specific polar components can also be related to human performance. It was shown that the
most informative individual features were found in the low-to-medium angular frequencies coupled
to low radial frequencies, and that the FBT algorithm achieved good recognition performance when
it was based on a wide range of angular frequencies coupled to low radial frequencies. We can not
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Fig. 12. Performance on a (A) ranked recognition and (B) verification tests. Results of previous algorithms are from Phillips

et al. [1998], based on standard PCA (PCA) and works of Moghaddam et al. [2000] (PCA + Bayesian), Etemad and Chellappa

[1997](PCA + LDA), and Lades et al. [1993](Gabor + EBGM).
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Fig. 13. Incorrect rejection (red line) and false alarm (blue line) rate as a function of the threshold of the FBT algorithm.

Table II. Equal Error Rate of the

Proposed and Previous Algorithms

Algorithm Equal Error Rate

PCA 7

PCA + Bayesian 4

PCA + LDA 1

Gabor + EBGM 2

FBT 2

DFT 4

FBT + DGT 3

make a direct comparison of this finding with previous studies, since only Cartesian frequencies were
considered in the latter case. It was evident, however, that the DFT-based algorithm required a wide
range of frequency sampling in order to achieve good results, in agreement with the findings that
both low and high spatial frequencies are important for face-recognition algorithms [Harmon, 1973;
Sergent, 1986; Nastar, et al. 1997]. Human face recognition, on the other hand, is tuned to a limited
band of frequencies, between 10 and 20 cycles per face, according to psychophysical studies [Tieger and
Ganz 1979; Costen et al. 1996; Nasanen 1999]. Other studies concluded that gender classification and
identification can be based on solely low- or high-frequency components, respectively [Sergent 1986].
Thus, if polar frequency components participate in human face recognition, it is expected that a wide
range of angular frequencies, along with low radial frequencies, would have the highest relative weight
for face recognition.

6.2 Dissimilarity Representation Space

In the proposed algorithm, the classifier operates in nondomain-specific metric space whose coordinates
are similarity relations. In this space, images are represented as points whose coordinates are defined by
their similarities to the other images, not by their FB coefficients. The effect of the PFLD is basically to
reduce the distances between points of the same subjects and to increase it for points from other subjects.
Probe images are also mapped onto this dissimilarity space, projected on the PFLD components, and
classified according to the nearest class object. The high performance achieved by this representation
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indicates that the “real-world” proximity relations between face images are preserved to a good extent
in the constructed internal space. An interesting question to ask is “Do humans internally represent
faces in a dissimilarity space”?

One strategy to answer this question is to measure the dissimilarity (or distance) between different
shape objects by objective (like geometry or pose) and perceptual (like recognition response time) pa-
rameters [for detailed review of shape representation by humans, see Edelman 1999]. Comparison of
the two measurements is usually done by a multidimensional scaling (MDS) analysis, which projects
objects as points in a two-dimensional space where the distance between the points approximate the
Euclidean distance between the original objects. For example, in one study, 41 face images were sorted
by degree of similarity according to geometrical (manual) measurements and by perceptual similarity
[Rhodes 1988]. The two sorting method results were highly correlated, especially when the objective
sorting used global features, such as age and weight of the persons in the images. Similar results were
obtained in a neurophysiological study [Young and Yamane 1992] in which monkeys were presented
with face images. It was found that the MDS proximity maps obtained from the original images and
from the response patterns of neurons in the inferotemporal cortex had similar patterns.

Evidence of dissimilarity representation by humans comes also from studies that did not involve face
images. In one of the first applications of this method, subjects were submitted to memory recall tests of
the outline shapes of 15 of the US states [Shepard and Chipman 1970]. In other studies, subjects were
submitted to recognition tests of closed contours representing the outline shape of objects [Shepard and
Cermak 1973; Cortes and Dyre 1996], while objective measurements were based on Fourier descriptors.
In all these cases, MDS analysis of shapes and subject responses revealed a similar pattern. Extending
the studies to animal-like shapes led to the same conclusion [Edelman 1995; Cutzu and Edelman 1996,
1998]. The task of the subjects was to decide if two objects are similar and which of two pairs of objects
are more similar to each other. Again, based on delay-time measurements, MDS analysis showed that
people related the objects according to the objective similarity relations. Control experiments with
“scrambled” (nonsense) shapes did not replicate the results.

These results indicate that representing images in a dissimilarity space, as done in the proposed
algorithm, can be analogous to human representation mechanisms. It is important to note that in
several of these studies, the shape measurements that correlated with the human performance were
taken from a global perspective (age, Fourier descriptors, etc.)—a further indication of the relevance of
global image analysis approach adopted here for human face recognition.

6.3 Future Research

Ideally, the representation of a face would be robust to changes in its appearance, but still be able to
distinguish it from faces of other subjects. The FBT-based algorithm was tested only on frontal view
face images and relatively constant illumination. There is no reason to believe that it will perform
well under strong variation of this kind. From the computational point of view, we expect that a face-
tracking algorithm [Feris et al. 2004], followed by image normalization, would improve the algorithm
performance and make it independent of ground-truth information. Preliminary tests also indicate that
image resolution can be strongly reduced with only a small effect on performance, but with a significant
reduction in processing time.

Performance improvement can be achieved by normalization of the FBT coefficients, such that the
face representation becomes invariant to translation, rotation, and scale [Cabrera et al. 1992]. This
is possible if the transform is obtained from the center of a face whose contour (or radius) is known.
The coefficients ranking test results indicate that the algorithm may benefit from an implementation
of a feature selection step. Currently all the coefficients in a specific range of frequencies are used. An
alternative would be to increase the frequency range, but select only the coefficients with the highest
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predictive value, based on the training set. Finally, as the Euclidean distance currently in use was
found to perform poorly [Sim et al. 2000; Moghaddam et al. 2000], other alternative metrics, like the
Mahalanobis distance, should be evaluated.

An important issue to be investigated regards local and multiscale features, which should be inte-
grated in our future experiments by applying local FBT and exploring Gabor filters and wavelets on
polar representation of faces. Finally, our ongoing interests include face recognition in video sequences
and in different 3D poses.
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