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Abstract

Motivated by a recently proposed biologically-inspired
face recognition approach, psychophysical experiments
have been carried out. We measured recognition perfor-
mance of polar frequency filtered face images using an 8-
alternatives forced-choice method. Test stimuli were gener-
ated by converting the images from the spatial to the polar
frequency domain using the Fourier-Bessel transformation
(FBT), filtering of the resulting coefficients with band-pass
filters, and finally taking the inverse FBT of the filtered co-
efficients. We also evaluated an automatic FBT-based face
recognition model. Contrast sensitivity functions of the hu-
man observers peaked in the 8-11.3 radial and angular fre-
quency range, with higher peak sensitivity in the former
case. The automatic face recognition algorithm presented
similar behavior. These results suggest that polar frequency
components could be used by the human face processing
system and that human performance can be constrained by
the polar frequency information content.

1. Introduction

Knowledge of which visual features are used for the
recognition of different types of objects is crucial for under-
standing of human visual processing and can indicate use-
ful features for automatic face recognition systems. Face
recognition is one of the best understood cognitive tasks
[14], due in part to the identification of several critical spa-
tial components, although the way these components are
integrated is still a controversial issue [2]. However, the
known studies looked for Cartesian-defined spatial compo-
nents, usually using Fourier-filtered face images. These
studies and the resulting theoretical models did not take

into account physiological and psychophysical evidence
that suggests the existence of mechanisms for visual anal-
ysis in polar coordinates (see Section 2). In order to fill
this gap, a computationally successful biologically-inspired
approach to face recognition using polar domain represen-
tation has been recently reported [19].

In the current study we investigate the possibility that
spatial polar-defined components are used selectively in hu-
man face processing and report here the first results. More-
over, we compare the performance of human observers with
that of the proposed face recognition model. The main con-
tribution of this study is in demonstrating, for the first time,
that human visual face processing could involve selective
use of polar frequency components.

This paper is organized as follows. In the next section
we present a brief review of the literature relevant to face
recognition and spatial frequency analysis. In Section 3 we
detail our experimental design and stimuli generation and
finally we describe our results and discuss their implications
in Section 4.

2 Selective spatial frequency usage in face
recognition

In classical studies of the human visual system, the lu-
minance of test stimuli is modulated by a sine function in
Cartesian coordinates. This choice is based on the shape of
the receptive fields, sensitivity of retinal ganglion cells as
well as cells in area V1 of the brain [4]. In accordance with
this view, all the previous studies (to the best of our knowl-
edge) searched for the fundamental components of human
face processing in the Cartesian frequency domain. Such
experiments typically employed face images whose spa-
tial frequency content were manipulated using band-pass
Fourier filters. Most of these studies confirmed that face



recognition is sensitive to the spatial frequency content of
the images, and concluded that the mid-range spatial fre-
quencies, between 10 and 20 cycles per face, are the most
important for this task [3, 7, 11, 15]. This knowledge was
essential to a comprehensive understanding of the cognitive
function, since it delimited the quantity and quality of the
information available in higher level stages.

However, more recent physiological and psychophysical
studies gathered evidence on the tuning of visual cells to
stimuli defined in coordinate systems other than the Carte-
sian. Sensitivity to complex shapes, like stars, rather than
to simple Cartesian stimuli (bars), was observed in several
cells in the visual area V4 of macaque monkeys by [9]. At
the same time, [5, 6] probed cells in area V4 with Carte-
sian, polar, or hyperbolic gratings and showed specificity to
these types of stimuli. A few years later, [10] extended the
study to lower processing levels of the visual pathway and
found that populations of cells in areas LGN, V1 and V2
are also tuned to these types of stimuli. The physiological
evidences on the specificity of cells to non-Cartesian stim-
uli were further supported by psychophysical experiments
using Glass patterns. The stimuli used by [16, 17] con-
sisted of a pattern of random dots, presented within a circu-
lar window, that generated a percept of global structure of
Cartesian, concentric, radial, and hyperbolic patterns. De-
tection threshold was measured by degrading the patterns
through the addition of noise. It was found that threshold
decreases from Cartesian, to hyperbolic, radial and concen-
tric patterns. Measurements of the thresholds, as function
of the stimulated area, showed a 3-4◦ visual degrees global
pooling of orientation information in the detection of radial
and concentric patterns, but only local pooling in the detec-
tion of parallel patterns. Similar results were obtained when
subjects had to judge which of two square arrays of Gabor
contained global structures, with higher sensitivity found to
concentric than to radial patterns [1].

Inspired by these latter studies, we first determined the
contrast sensitivity functions to fundamental patterns de-
fined in polar Cartesian [18] and later developed an auto-
matic face recognition system based on polar frequency fea-
tures, as extracted by Fourier-Bessel transformation (FBT),
and dissimilarly representation [19, 21]. This system was
thoroughly tested on large datasets and achieved state of
the art performance when compared to previous algorithms.
The current study is the first step in determining the relation
between the proposed face recognition model and human
behavior. At this stage, we limited ourselves to comparison
of the human contrast sensitivity functions with those ob-
tained with the simplest possible version of the model, i.e.
using only the polar components.

3 Material and methods

3.1 Polar frequency analysis

Let f (x, y) be the region of interest in the image.
FBT analysis starts by converting the image coordinates
from Cartesian (x, y) to polar (r, θ) domain. Let (x0, y0)
be the origin of the Cartesian image. The polar coordi-
nates necessary to obtain the new image representation
f (r, θ) are defined as θ = tan−1 (y − y0/x − x0) and

r =
√

(x − x0)
2 + (y − y0)

2.

The f (r, θ) function is represented by the two-
dimensional FB series, defined as [19]

f(r, θ) =
∞∑

i=1

∞∑
n=0

An,iJn(αn,ir) cos(nθ)

+
∞∑

i=1

∞∑
n=0

Bn, iJn(αn,ir) sin(nθ), (1)

where Jn is the Bessel function of order n, f(R, θ) = 0
and 0 ≤ r ≤ R. αn,i is the ith root of the Jn function,
i.e. the zero crossing value satisfying Jn(αn,i) = 0 is the
radial distance to the edge of the image. The orthogonal
coefficients An,i and Bn,i are given by

A0,i =
1

πR2J2
1 (αn,i)

2π∫
0

R∫
0

f(r, θ)rJn(
αn,i

R
r)drdθ (2)

if B0,i = 0 and n = 0;

[
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Bn,i

]
=

2
πR2J2

n+1(αn,i)
2π∫
0

R∫
0

f(r, θ)rJn(
αn,i

R
r)

[
cos(nθ)
sin(nθ)

]
drdθ (3)

if n > 0.

In the current study, we transformed the images up to the
30th Bessel order and root with angular resolution of 3◦,
thus obtaining 1830 coefficients1, each one being described
by a Bessel root and order number. In the polar frequency
domain, the Bessel root is related to the radial frequency
(number of cycles along the image radius) while the Bessel
order is related to the angular frequency (number of cycles
around the center of the image). Figure 1 shows plots of

1Each Bessel mode is represented by two coefficients, except those of
order zero that are represented by a single coefficient.



Figure 1. Spatial representation of FB coef-
ficients. The pairs of numbers indicate the
Bessel root and order (adapted from [8]).

a few FB patterns. Thus, these coefficients correspond to
a frequency range of up to 30 cycles/image of angular and
radial frequency. This frequency range was selected since
perceptually it preserved most of the original image infor-
mation.

3.2 Observers and equipment

Two of the authors participated in the tests. Observer S2
had no previous experience in psychophysical experiments,
while observer S1 had a few years of experience. However,
both were practiced with the unmanipulated stimuli prior to
data collection until recognizing with ease all subjects’ im-
ages. The stimuli were generated on a Philips 2020p color
monitor and the graphics board was set at a resolution of
1024 x 768 pixels with a frame rate of 85 Hz. Viewing was
binocular from a distance of 75 cm. The average luminance
of the display was 10 cd/m2 in an otherwise dark environ-
ment. To increase the number of luminance levels avail-
able from 256 to 4096, the red and blue color channels of
the graphics board were combined in a resistance network
[12]. The combined signal was connected to the green in-
put in the monitor and gamma corrected to produce a linear
luminance-modulated image.

3.3 Stimuli

We used eight face images from the FERET database
[13]. The criteria for the selection were: male gender, age
between 20 and 40 years, neutral expression, Caucasian

race, and absence of any special marks like beard, glass,
etc. Using the ground-truth eyes coordinates, we translated,
rotated, and scaled the images so that the eyes were regis-
tered at specific locations. Next, the images were cropped to
130 x 150 pixels size and a mask (zero value) was applied to
remove most of the hair and background. The unmasked re-
gion was histogram equalized and normalized to zero mean
(Fig. 2A). From the viewing distance, the images subtended
2.9◦ of horizontal visual degrees. Signal strength was de-
fined as the image contrast variance [7]. Signal strength
was manipulated by multiplying the image data by an ap-
propriate constant and converting of the contrast values to
luminance values.

Test stimuli were generated by first FB transforming the
original images from the spatial to the polar frequency do-
main, as described in Section 3.1. The resulting coefficients
were filtered by three-octave Gaussian band-pass filters cen-
tered at frequencies of 4, 5.6, 8, 11.3, 16 and 22.6 (half-
octave steps). The final images were obtained by taking the
inverse FBT of the filtered coefficients. Radial and angular
filtering was achieved by multiplying the Gaussian filters
along the Bessel root or Bessel order dimension, respec-
tively. Examples of radial and angular filtering are shown
in Figure 2. Unmanipulated original images and unfiltered
FBT images were also tested to establish a baseline perfor-
mance.

3.4 Procedure

Identification thresholds were determined using a single-
interval eight-alternatives forced-choice paradigm. Stim-
ulus contrast variance was manipulated using the method
of constant stimuli. Stimuli were filtered off-line and pre-
sented at a pseudo-random contrast level. At least 20 trials
were shown at each of six contrast levels, as determined
in pilot studies. The presentation order of the stimuli was
randomized. Observers were thoroughly familiarized with
the unmanipulated images. At the start of a trial, a fixation
cross appeared for 500 ms at the center of the screen, and a
brief tone indicated the presentation of the target stimulus.
The target image was exposed for 1500 ms and followed by
a set of eight unmanipulated images that appeared around
the region where the target had been displayed (see Fig.
2A for the images layout). Observers identified the target
image by pressing one of eight keys on the computer key-
pad. Decision time was unlimited (usually less than four
seconds). Auditory feedback was given for an incorrect re-
sponse. Threshold estimations at the probability level of
0.67 were calculated by fitting the data to Weibull functions.



A. Unmanipulated

B. FB radial filtering

4.0 5.6 8.0

11.3 16.0 22.6

C. FB angular filtering

4.0 5.6 8.0

11.3 16.0 22.6

Figure 2. Face stimuli used in the experi-
ments. All images are set to the same mean
luminance and contrast variance. (A) The
original normalized face images in the spatial
layout displayed to the observers. Radial (B)
and angular (C) filtering of the black-squared
image in A. Numbers below the images indi-
cate the respective filters central frequencies.

3.5 Automatic FBT-based face recognition

In order to compare the human performance with that of
a FBT-based model [19], we built a simple nearest neigh-
bor classifier. The classifier output quantifies the similar-
ity between the test and training objects. When this output
is normalized so that it sums to one, the individual values
can be considered as the posterior probability (or confidence
value) estimation that the two objects are of the same class.
The training objects were the unfiltered FB representations,
while the filtered versions were used for testing. The poste-
rior probability value that a test object belongs to the train-
ing objects was computed for each test (filtering) condition.
Recognition level at a each test condition was defined as the
average posterior probability value across the eight test ob-
jects. For example, if the posterior probabilities between the
training and 4-cycles radial filter images formed an 8-by-8
matrix, performance level would be the mean value of the
principal diagonal.

4 Results and discussion

Figure 3 shows the face recognition performance of the
two subjects and of the automatic FBT-based algorithm.
The contrast sensitivity functions of observer S1 had a bell-
shape and peaked in the 8 and 11.3 frequency with radial
and angular filtering, respectively. However, peak sensitiv-
ity with the angular filtering was only two-third that with
radial filters. The close match between the performance
with the unmanipulated and unfiltered FBT images was ex-
pected, as they are perceptually very similar, but we were
surprized to find out that contrast sensitivity could be higher
with radially filtered images than with unfiltered images.
We discuss this finding below.

Observer S2 showed somewhat different contrast sensi-
tivity functions. His curves peaked at slightly higher fre-
quencies, 11.3 and 16 cycles with radial and angular filters,
respectively. The function to angularly filtered images had
also a bell shape, but the radial curve had a much wider
band-width. As with observer S1, sensitivity with angular
filters was considerably lower than that with radial filters,
and had higher sensitive to radially filtered images than to
unfiltered images.

Although the differences between the results of the two
observers do not permit drawing a definitive quantitative
evaluation, several observations are clear. First, face recog-
nition is better tuned to mid-range frequency angular com-
ponents. Second, sensitivity to images filtered in the angu-
lar frequency domain is lower than to images filtered in the
radial frequency domain. The mid-frequency radial com-
ponents are also the most important for face recognition,
especially in the case of the more experienced observer S1.
The fact that sensitivity can be higher to radially filtered



Figure 3. Normalized face recognition perfor-
mance. Top and middle panels: Contrast
sensitivities of subjects S1 and S2. Bot-
tom panel: Posterior probabilities of the FBT-
based computational model.

images than to unfiltered images is interesting and is being
investigated specifically in our ongoing work. One possi-
ble explanation is that unfiltered and filtered images could
have the same (global) contrast variance, but differ still in
their local contrast, and observers relay more on informa-
tion from these higher contrast regions. A related effect is
a possible ”exaggeration” of certain facial features (local
and/or global) that can helps in the recognition.

The higher sensitivity to mid-range frequency compo-
nents could reflect lack of information in the images or
internal constraints in the face processing. The results of
the automatic FBT-based face recognition algorithm sup-
port the first explanation. The function curves of the model
were similar to those of the human observers in regard to the
peak sensitivity location (8 cycles) with both radial and an-
gular filters, and the relatively lower sensitivity with angu-
lar filters (15%). However, it should be noted that the model
curves are closer in shape to those of observer S1 and that
the sensitivity function with angularly filtered images has
more a low-pass filter shape than a bell shape. Even af-
ter considering these differences, the similarities found be-
tween the human and simple model behaviors are surprising
and suggest that humans can use polar analysis for faces
identification. Moreover, they establish for the first time a
direct relation between human face recognition and a polar-
frequency based model. Correlating more complex aspects
of the complete model to human behavior, like error analy-
sis, is the next natural step in this research line.

The current results are not in contradiction to previous
studies which indicated that face recognition is tuned to the
mid-range Cartesian frequency band, and do not imply that
this task relies exclusively on fundamental FB spatial pat-
terns. In fact, judging by the appearance of the image stim-
uli, we expect to find a positive correlation between the po-
lar and Cartesian filtered images. Such correlation can be
measured by analyzing the Fourier amplitude spectrum of
the FB filtered images. However, the differences in working
coordinates and base functions turn this analysis too com-
plex and beyond the scope of this paper.

5 Conclusions and Future Directions

It can be concluded from our preliminary results that po-
lar frequency components could be used in human face pro-
cessing and that human performance could be constrained
by the polar frequency information content. In our ongoing
work we are improving the experimental design by increas-
ing the number of observers and face images, as well as by
reducing the filters bandwidth. Detailed correlation analysis
of the errors made by the human observers and the model
can further increase our confidence in the aforementioned
conclusions. Furthermore, we are considering comparison
of human behavior with a local-based FBT decomposition



computational model [20].
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