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Abstract

A careful comparison of three numeric techniques for estimation of the curvature along spatially
quantized contours is reported. Two of the considered techniques are based on the Fourier transform
(operating over 1D and 2D signals) and Gaussian regularization required to attenuate the spatial
quantization noise. While the 1D approach has been reported before and used in a series of
applications, the 2D Fourier transform-based method is reported in this article for the first time.
The third approach, based on splines, represents a more traditional alternative. Three classes of
parametric curves are investigated: analytical, B-splines, and synthesized in the Fourier domain.
Four quantization schemes are considered: grid intersect quantization, square box quantization,
a table scanner, and a video camera. The performances of the methods are evaluated in terms of
their execution speed, curvature error, and sensitivity to the involved parameters. The third approach
resulted the fastest, but implied larger errors; the Fourier methods allowed higher accuracy and were
robust to parameter configurations. The 2D Fourier method provides the curvature values along the
whole image, but exhibits interference in some situations. Such results are important not only for
characterizing the relative performance of the considered methods, but also for providing practical
guidelines for those interested in applying those techniques to real problems.
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1. Introduction

The analysis of 2D shapes is one of the most classical, important, and widely studied
problems in pattern recognition and computer vision, finding applications in a myriad of
practical problems. Nevertheless, in spite of its seeming simplicity, there is no definitive
approach to 2D shape analysis and classification, and much effort is still needed mainly
in order to assess the existing techniques and to improve the accuracy and recognition
rates of the most reliable approaches. Among the different methods for 2D shape analysis,
those based on the shape boundarycurvatureconstitute some of the most comprehensive
and promising, as discussed in more detail in the following. The main objectives of the
present article are twofold: to introduce a new Fourier-based 2D curvature estimation
technique and to comparatively evaluate the performance of three numerical methods for
digital curvature estimation. Such results can provide valuable insight not only on the
specific advantages and disadvantages of each method, but at the same time offer practical
guidelines for those interested in applying the techniques in real problems. In addition,
the adopted performance assessment framework can be generalized to other curvature
estimation techniques.

First, as far as information preservation is concerned, curvature is a complete represen-
tation, since the original curve can be reconstructed (up to rigid-body transformations).
Furthermore, since it is a well-accepted fact that not all points on shape boundaries are
equally relevant, finding the more salient (or critical) points is an extremely important task
for feature extraction and contour segmentation. Curvature also plays a central role within
this context: there are various methods that search for these critical points in terms of local
maximum and minimum curvature points, as well as zero curvature (straight line) por-
tions. The curvature is invariant to rigid-body transformations (i.e., translations, rotations,
and reflections). In addition, psychophysical evidences have also shown that curvature is
an extremely important cue for our visual perception processes [1], in such a way that cur-
vature peaks tend to correspond to the salient shape points. Finally, interesting physical
analogies based on the curvature concept have led to powerful shape analysis techniques.
For instance, elasticity theory provides the useful concept ofbending energy, a global fea-
ture calculated in terms of the curvature along the contour [2,3], which can be used for
characterizing shape complexity [4].

This work describes and discusses a performance assessment framework for digital
curvature estimation methods, as well as the results of assessing two different approaches
based on Fourier properties and a spline-based interpolation scheme [5,6]. The emphasis
given in the current article to the Fourier approach is motivated by the inherent high
accuracy allowed by this approach [7–10]. In other words, the Fourier approach allows the
consideration of the whole neighborhood around each point at which the curvature is to be
estimated, not only a limited neighborhood and resolution as implied by several alternative
methods such as [5,6]. The discrete Fourier transform can also be effectively executed by
using the FFT. Additional bonuses allowed by this approach include the fact that the shape
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can be easily smoothed in the Fourier domain and that the Fourier descriptors, which
are valuable resources for the shape characterization and classification, are obtained as
byproducts.

Basically, there are two different ways of estimating the curvature of a digital shape,
i.e., either from the object parametrized outline or directly from the 2D image by using the
concept of isopotential curves. Contour-based approaches are more popular and widely
used in different vision problems such as in biomedicine, fingerprint recognition, and
OCR [11–13], presenting several interesting advantages such as the fact that dealing
inherently with 1D data representations is computationally less demanding and the
existence of substantial technical literature on contour analysis [7].

Nevertheless, one of the main drawbacks of this approach is the fact that the object
must have its contour extracted in parametric fashion before further analysis [7]. On the
other hand, the latter class of techniques, which is applied directly to the 2D image, does
not depend on contour tracking, allowing dedicated hardware to be used to implement the
imaging procedures (such as convolution). Furthermore, the size of the input data becomes
independent of the object perimeter, which does not hold to the contour-based approach,
since the number of points of the extracted contour varies with the object perimeter. A good
discussion on the robustness of computing derivatives over a level set can be found in [14].

The reader is referred to [15–18] for a detailed review of the many alternative curvature
estimation methods for digital images. The main problem that must be solved for digital
curvature estimation is that the curvature expression involves differentiation of discrete
data, which is an ill-posed problem that must be circumvented by the introduction of a
regularization procedure. The standard approach is based on smoothing the data, e.g., by
convolving the contour with a gaussian kernel, which is the case, for instance, in the now
classical work of Mokhtarian and Mackworth [19]. Alternative approaches include local
interpolation of the data [6] and the use of different discrete curvature measures, such as the
c-curvature of Davis [20]. On the other hand, the 2D-based techniques have also received
attention from the image processing community. Some examples of works devoted to this
approach can be found in [21,22].

Another important aspect addressed in the present work concerns the validation and
comparison of the 1D and 2D Fourier-based approaches. Indeed, vision science researchers
have been criticized not only for not spending enough attention on characterizing the
performance of new approaches respectively to a representative set of data, but also for
not comparing such new techniques with a more traditional alternative [23,24]. Only more
recently have some works addressed the topic of performance assessment in a systematic
way [25–28]. One of the main characteristics of the present work is to go a long way toward
addressing these criticisms. First, special care is spent in trying to define a representative
set of data (see Section 3.1), with special attention given to 2D closed, simple (in the sense
of being Jordan curves) parametric curves. The reason for concentrating on closed curves is
that this type of curve is inherently compatible with Fourier-based derivative estimation. In
other words, the fact that both these curves and the discrete Fourier transform are periodical
allows continuity of the curve and its derivatives, which is not generally verified for open
curves.

While it should be stressed at the outset that it is virtually impossible to consider a
wholly representative set of testing data, it is believed that it is better to consider some
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large, even if not completely representative, set of shapes than to consider just a handful,
as sometimes happens in the related literature. More specifically, three kinds of curves have
been considered: (a) those defined by analytical expressions, such as sinusoidal circles and
spirals; (b) curves defined by B-splines [5]; and (c) curves synthesized in terms of spectral
content [29]. It is important to note that, in each of these cases, it is possible to obtain an
analytical and absolutely precise quantification of the point curvature along the contours
(see Section 3.2), to be used as a standard for comparison. Each of these is spatially
sampled, before numeric estimation, according to four quantization schemes: (i) grid-
intersect quantization, (ii) square box quantization, (iii) using a conventional camera, and
(iv) using a conventional scanner. Observe that (iii) and (iv) also involve printing the
shapes through a conventional laser printer. These two latter schemes provide a more global
characterization of the considered methods given typical practical situations.

Great attention has also been focused in defining unbiased and comprehensive merit
figures allowing proper characterization of the considered techniques (see Section 3.3).
The important features to be considered included the accuracy in the curvature calculation,
defined in terms of root mean square (RMS) error between the analytical and numerically
estimated curvatures, the robustness to parameter tuning, expressed in terms of the
distribution of the optimal parameters (the scale parameters defined by the standard
deviation of the smoothing Gaussians), and the execution time. A more detailed discussion
of such measures can be found in Section 4.

In addition to trying to characterize the performance of the considered techniques
according to a formal, comprehensive, and comparative fashion, there are some particularly
interesting questions, inherently defined by the specific features of the Fourier techniques,
which should at least partially be answered by the considered framework. For instance,
since both first and second order derivatives are needed in the 1D and 2D approaches,
it would be interesting to verify the use of two distinct standard deviation values in the
regularizing Gaussian smoothing. In other words, since the second order derivatives imply
higher enhancement of high frequencies than those needed for first order derivatives, it
is interesting to check whether the use of a larger smoothing for the second derivative
would lead to improved accuracy. Another important point to be investigated concerns the
robustness of the techniques given different parameter settings.

The current article starts by describing the three curvature estimation numerical
approaches considered, covering the 2D Fourier-based approach (first outlined in [30])
in more detail. Then, the performance assessment framework is presented in detail, which
is followed by the obtained results and the respective discussion. The paper concludes by
presenting the overall conclusions as well as possibilities for future developments.

2. Fourier-based curvature estimation

As is well known from linear algebra, unitary linear transformations provide a complete
(in the sense of being invertible) alternative representation of the signals in the “time” (1D
signals) or “spatial” (2D signals) domains. Indeed, the net effect of such transformations
consists in expressing the signal in a new basis, which is obtained by rotating the coordinate
system. The advantage of transformations such as the Fourier transform, which are quasi-
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unitary, lies in the fact that the complex exponential basis used in this transformation,
because of its highly correlated nature, usually allows the signal to be represented in
a much more compact form, i.e., with just a few spectral components. However, the
Fourier transform also possesses a series of additional interesting properties, such as the
differentiation property, given by Eqs. (1) and (2), respectively, to 1D and 2D signals,
whereH(f ) = �(h(t)) andH(u, ν) = �(h(x, y)). Such properties allow an interesting
means for numeric estimation of derivatives, since the Fourier transform can be fast and
effectively performed numerically

dn

dtn
h(t)= �−1{(i2πf )nH(f )}, (1)

∂n

∂xn

∂m

∂ym
h(x, y)= �−1{(i2πu)n(i2πv)mH(u, v)}, (2)

wherei = √−1 . Given that curvature has a differential nature, as it is clear from Eq. (3),
it is in principle possible to use the properties (1) and (2) as a means for numerical
estimation of curvature. Observe that thex andy variables in Eq. (3) refer to the parametric
functionsx(t) and y(t) defined by the contour. Initially proposed in [31], in terms of
Fourier series and Kaiser regularizing windows, this possibility has been more extensively
developed and applied in a more recent series of developments [7–9] and which rely on
the Fourier transform and Gaussian smoothing, being essential for regularizing the high
frequency noise introduced by the spatial quantization. Indeed, the standard deviation of
the regularizing Gaussian defines a scale parameter allowing multiresolution representation
of the estimated curvature [8,9]. While such works focused curvature estimation of 2D
closed contours, done in terms of 1D Fourier transform, it is also interesting to investigate
the possibility of using 2D Fourier transform. The main advantage of such an approach is
that it can be applied to estimate the curvature, by using Eq. (4), alongall the isopotential
curves defined by a surfaceφ(x, y) containing the original shape contour as one of its level
curves, which can be done. A secondary advantage of such an approach is that the size of
the input data does not necessarily vary with the perimeter of the shapes, as happens in the
1D approach.

k = ẋÿ − ẏẍ
(ẋ2 + ẏ2)3/2

, (3)

k = ∇ · ∇φ
‖∇φ‖ = φxxφ

2
y − 2φxφyφxy + φyyφ2

x

(φ2
x + φ2

y)
3/2

. (4)

The next sections present the 1D and 2D Fourier-based curvature estimation techniques,
respectively, with special attention given to the latter, since it is presented here for the first
time.

2.1. Curvature estimation based on parametric curve approximation

This first approach assumes that the derivatives of the curvature expression, Eq. (3),
are calculated based on a local piecewise approximation of the contour points. More
specifically, suppose that the curve to be adjusted is a cubic parametric polynomial int ,



L.F. Estrozi et al. / Digital Signal Processing 13 (2003) 172–197 177

with t ∈ [0,1] , which approximates a curve segment between two contour pointsA (t = 0)
andB (t = 1). Therefore, for this curve segment, the approximation curve is defined as:

x(t)= a1t
3 + b1t

2 + c1t + d1, (5)

y(t)= a2t
3 + b2t

2 + c2t + d2. (6)

By calculating the respective derivatives and substituting them in the curvature expression,
Eq. (3), it can be easily verified that the curvature at the pointA (t = 0) of the contour is

k = 2
c1b2 − c2b1

(c2
1 + c2

2)
3/2
. (7)

Medioni and Yasumoto [6] have used cubic B-splines with equally spaced nodes for
piecewisely adjusting the parametric curve segments. The coefficientsb1, b2, c1, andc2
of Eq. (7) above can be calculated, from the above expressions, as (refer to [6] for further
detail):

b1 = 1
12

(
(xn−2 + xi+2)+ 2(xn−1 + xn+1)− 6xn

)
, (8)

b2 = 1
12

(
(yn−2 + yn+2)+ 2(yn−1 + yn+1)− yn

)
, (9)

c1 = 1
12

(
(xn+2 − xn−2)+ 4(xn+1 + xn−1)

)
, (10)

c2 = 1
12

(
(yn+2 − yn−2)+ 4(yn+1 + yni−1)

)
. (11)

The curvature is calculated by substituting the above coefficients in the curvature equa-
tion (7).

2.2. 1D curvature estimation based on the fourier derivative property

The curvature estimation method discussed in this section originates from thecurveg-
ramconcept discussed in [8,9] and has been considered in several applications [4,7,10]. Let
c(n)= (x(n), y(n)) be the parametric contour of interest, withn = 0, . . . ,N − 1, and let
N be the number of points along the boundary. The contour can be represented as a com-
plex signalu(n) = x(n)+ iy(n). A fundamental tool for this approach is the 1D Fourier
transform pair ofu(n), given by

U(s)= �{
u(n)

} =
N−1∑
n=0

u(n)e−i2π(sn/N), s = 0, . . . ,N − 1, (12)

u(n)= �−1{U(s)} = 1

N

N−1∑
s=0

U(s)ei2π(sn/N). (13)

The auxiliary functionη(s) is a useful tool for the estimation of the discrete derivatives
of u(n),

η(s)=
{
s, if s = 0,1, . . . ,

(
N − floor(N/2)− 1

)
,

N − s, if s = (
N − floor(N/2)

)
,
(
N − floor(N/2)+ 1

)
, . . . , (N − 1),

(14)
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with floor (N/2) being the truncation function. Functionη(s) implements the necessary
alignment because of the representation normally produced by the DFT (i.e., the frequency
representation formed by the second part followed by the first part of the next period).
The signals should be smoothed because of a high frequency enhancement effect produced
by numerical differentiation, which is achieved by taking the smoothed versionu(n, a)

of u(n),

u(n, a)= �−1{U(s)Ga(s)}, (15)

whereGa(s) = exp(−(aη(s))2). Contour shrinking is avoided by taking for the spatial
scale parametera a value as small as possible in order to filter the spatial quantization
noise and not distort the contour too much. The smoothed first and the second derivatives
of u(n) are defined as

u̇(n, a)= �−1{i2πη(s)U(s)Ga(s)}, (16)

ü(n, a)= �−1{−(2πη(s))2U(s)Ga(s)}. (17)

The multiscale curvature description ofu(n) is given by

k(n, a)= −�{u̇(n, a)ü∗(n, a)}
|u̇(n, a)|3 , (18)

wherez∗ denotes the complex conjugate and|z| denotes the complex modulus ofz.
Although it is possible to apply the 1D Fourier method to contours with any amount

of points, it is often much more efficient to consider the number of points which are
integer powers of two, because this situation allows for fast Fourier transforms. This
can be easily accomplished by linearly interpolating the parametric curves along evenly
distributed portions of the original curve, in order to produce a new representation with the
desired amount of points, i.e., the smallest integer power of two larger than the original
number of points.

2.3. 2D Fourier-based method

Given a regular and simple curvec(t), not necessarily represented in parametric
fashion, it has to be in some way extended onto the 2D domain before the 2D differential
operators can be applied. Two possible alternatives for implementing such an embedding
are (i) to fill the interior ofc(t) with 1, assign1

2 to the contour elements, and zero to
the background; and (ii) to apply a signed distance transform to the contour in such a
way that the interior becomes negative (resp. positive) and the exterior positive (resp.
negative). Three issues should be taken into account while choosing between such schemes.
First, as far as execution time is concerned, alternative (i) is simpler and therefore faster.
Second, the larger the spread of the extended surface, the higher the interference between
parametrically distant but geometrically close portions of the curve. In this respect,
scheme (i) is again more suitable. Third, smoother extended surfaces tend to allow fewer
discontinuities while differentiating in order to estimate curvature. While the second
strategy is in principle more likely to induce smoother extensions, the Gaussian low-pass
filtering inherent to the Fourier approaches, provided a suitable standard deviation is used,
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can also smooth the more abrupt transition implied by scheme (i). In order to favor speed
and minimize curve interferences, the present article has adopted the former scheme. Once
such an extensionφ(x, y) is achieved, the curvature of the contour defined byφ(x, y)= a
(a level-curve) can be estimated by using Eq. (4) implemented in the Fourier domain
considering Eq. (2).

As with the 1D approach described in the previous section, it is necessary to regularize
φ(x, y), since it is represented in a spatially sampled space. This will be done by
convolvingφ(x, y) with a circularly symmetric 2D Gaussian given by Eq. (19), which
is more effectively done in the Fourier domain,

Gσ (x, y)= 1

2πσ 2
e−(x2+y2)/2σ 2

. (19)

It should be observed that, though initially all the original contour points lie at the
same level-curve, this is no longer true after the regularization. Since for small smoothing
degree the curves do not shift too much, the curvatures are henceforth taken at the original
coordinates.

3. The evaluation framework

In order for different numerical methods to be properly compared, it is important to
define an overall computational framework which is as fair and comprehensive as possible.
This endeavor entails three main issues, namely defining a suitable set of test shapes,
modeling the spatial quantization schemes, and identifying suitable merit figures which can
express how the methods fulfill the principal properties expected of them. The following
sections present and discuss each of these issues, respectively.

3.1. The considered shapes

Before the performance of different curvature estimation techniques can be properly
evaluated, it is necessary to define the basic standard input for the methods. Three important
properties are expected from such shapes. First, they must allow an analytic description of
curvature, since this is essential for quantifying the accuracy of each considered method.
Second, the set of shapes must be as general as possible in order to provide a representative
sample of the shapes to be found in typical shape analysis applications. While the former
of these features does not pose a real problem in practice, it is virtually impossible to
consider a fully representative set of shapes, since the possible objects in nature define
a virtually unlimited number of shapes. The limiting factor here is the computational
resources demanded to process and analyze the performance respectively to a very large
set of shapes. The third requirement concerns the fact that the analytical curvature, defined
by the curves, must not be too high and not vary too abruptly, in order to be properly
represented in the orthogonal grid used for spatial quantization of the curves, since it is
not fair to expect a numerical technique to estimate a curvature which is not properly
represented in the image. This requirement has been implemented by not using any curve
implying curves whose radius of curvature is smaller than1

3 of a pixel, except for a small
number of small isolated regions.
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Fig. 1. Sinusoidal circles with varying number of branches and internal radiuses.

Fig. 2. Spirals with different width evolutions.

Fig. 3. Some of the considered B-spline-generated contours.

In order to address the above issues, the current approach has considered three distinct
classes of closed, simple (Jordan) curves. First, as illustrated in Figs. 1 and 2, we have
analytical curves such as sinusoidal circles and spirals, respectively (though not closed
in their analytical versions, these spirals have been closed by hand), which can provide
a broad variety of shapes, though being limited by the nature of the respective functions
(e.g., harmonic functions will tend to imply smooth curves, and so on). Second, cubic
splines generated in terms of control points interactively supplied by the operator, shown in
Fig. 3, have been considered in an attempt to represent more general shapes such as those
found in natural objects. However, the generality of such splines is also limited by their
inherent characteristics, such as theirCn parametric continuity. The third class of shapes,
presented in Fig. 4, includes curves defined in the Fourier domain [29] and synthesized
by the inverse Fourier transform, but again this approach implies some specific properties,
such as beingCn.
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Fig. 4. Fourier synthesized shapes with different periods and harmonic compositions.

3.2. Spatial quantization schemes

Considering that the selected shapes have to be continuous in order to allow exact
curvature quantification to be used as a comparison standard, it is necessary to use
some suitable spatial quantization method, which maps such continuous curves into
the orthogonal grid inherent to any digital image. Four distinct traditional quantization
schemes have been considered in the present work in order to provide a general view
of the performance of the numerical techniques under varying quantization conditions.
Out of these four methods, two are precisely defined in mathematical terms: the grid
intersect quantization [32], GIQ, and the square box quantization [32], SBQ. The other
two quantization schemes consist of using a standard table scanner (HP Scanjet 4L) and
a video camera (Sony CCD IRIS) in order to acquire the images of high quality printouts
of the shapes (HP LaserJet 4L, 300 dpi). Figure 5 illustrates the GIQ (a) and SBQ (b)
representations of a same shape, and zoomed respective sections (c) and (d). Since the SBQ
typically implies a more dense spatial quantization of the original analytical curve, it could
be expected that smaller errors would be obtained by a numerical curvature estimation
technique operating over such representations.

It should also be observed that the GIQ and SBQ schemes can produce representations
including double points, such as that marked with an∗ in Fig. 6a. Since such double points
can make the curve not regular during curvature estimation, it is important to remove them,
which is currently done by incorporating additional conditions in the curve quantization.

Special remarks regarding the detection of the shape edges include the fact that, while
this operation is not required when considering the GIQ and SBQ schemes, a simple thresh-
old operation followed by binary edge detection is considered for the shapes obtained from
the scanner and camera. In practical general situations, traditional edge detection schemes
(see, for instance, [7,33,34]) can be applied. The slightly different edges obtained by such
different methods are uniformized by the Gaussian smoothing inherent to the application
of different contour extraction algorithms that generally affect curvature estimation [35].

3.3. Merit figures

The evaluation framework adopted in the present work consists in presenting the previ-
ously mentioned four spatially sampled versions of each of the considered reference shapes
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Fig. 5. Square box (a) and grid intersect (b) quantizations of a specific parametric curve, and respective zoomed
sections (c) and (d).

Fig. 6. Repeated points (a) and representation after removal of such points (b).
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to each numerical method and comparing the analytical and the numerically estimated cur-
vatures along the curve. As already observed, three performance characteristics have been
specially taken into account: (a) the implied execution times, (b) the estimation errors, and
(c) the sensitivity of the techniques given specific parameter configurations, here quantified
in terms of the dispersion of the optimal scale parameter values and the extension of the
spatial scales for which the error does not exceed 10% of the minimal error.

One of the most direct and intuitive ways of quantifying the estimation error is in terms
of some traditional metrics, such as the RMS error, an approach that is adopted in the
present article. More specifically, for each shape and considered method, a global errorε

is obtained by using Eq. (20), whereko is the calculated curvature using the proposed
techniques,ka is analytical quantized curvature, andN is the number of contour points.

εrms=
√√√√ 1

N

N∑
i=1

(
ko(i)− ka(i)

)2
. (20)

However, while the Euclidean distance does provide a global measurement of similarity
between all the original and estimated curvatures along the curves, it also presents some
shortcomings. For instance, a large difference in just a single point may generally influence
the overall error. Since such problems will be implied by virtually any alternative metric,
we tried to control such effects by having the curvatures (both analytical and numerical)
equalized through a sigmoid function (thus limiting curvature values within the[−3,+3]
range) before the Euclidean distance is calculated. This process involves Eq. (21), wherex

denotes a curvature value anda is the maximum allowed curvature absolute value.

S(x)= a
[
ex/a − e−x/a
ex/a + e−x/a

]
= a

[
1− 2

e2x/a + 1

]
. (21)

In order to provide a more complete characterization of the estimation error, the Euclidean
distances have been organized in terms of histograms.

Concerning the third performance issue, namely the sensitivity of each method given
specific parameter configurations, two measures have been considered. First, it is interest-
ing to quantify the dispersion of the optimal parameters. For each estimation technique the
best parameter (i.e., the standard deviation) value, in the sense of smaller estimation error,
is identified by using a brute force approach (i.e., scanning along the parameter space), and
the respective distribution is expressed in terms of respective histograms. Large disper-
sion values indicate that the optimal standard deviation values vary considerably from one
curve to another, making the choice of a suitable parameter particularly difficult; smaller
dispersions indicate that the best parameters will be all comprised within a reasonably
small interval. The second sensitivity measurement expresses the extension of the spatial
scales for which the error does not exceed 10% of the minimal error in each case (see
Fig. 7), here considered in terms of histograms. Consequently, while better performances
are characterized by larger extensions, smaller extensions imply high sensitivity to para-
meter configuration.
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Fig. 7. Spatial scale extension considered as a sensitivity quantitative measure.

Fig. 8. Time histogram for interpolated version of the 1D Fourier method. Average value (standard devi-
ation)= 0.008(±0.003) s.

4. Results

The following sections present the performance assessment of the considered numerical
curvature estimation techniques with respect to the three considered aspects: (a) execution
time, (b) estimation errors, and (c) parameter sensitivity. The henceforth presented results
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Fig. 9. Time histogram for the 2D Fourier method. Average value (standard deviation)= 3.5 (±0.2) s.

Fig. 10. Time histogram for Medioni and Yasumoto’s method. Average value (standard deviation)=
0.002(±0.005) s.

were obtained by running Delphi (versions 3 and 4) implementations of the techniques in a
Pentium II 333 MHz, 256 Mbytes of memory, IBM-PC compatible microcomputer under
Windows 95.

4.1. Execution times

Histograms of the execution times, obtained by using the operating system internal
clock, are presented in Figs. 8–10, to 1D Fourier, 2D Fourier, and Medioni and Yasumoto’s
approaches, respectively. It should be observed that the times for 1D Fourier are respective
to interpolated versions of the curves obtained as described in Section 2.2, since this
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(a)

(b)

Fig. 11. Typical behavior of the estimation error for 1D (a) and 2D (b) Fourier-based methods. Both scales are
logarithmic.

strategy allows the fastest execution speeds through the FFT. It should be observed that
the presented histograms include all the considered curve classes and quantizations. The
time required to linearly interpolate the curves in the 1D Fourier approach (explained in
Section 2.2) has not been considered in the execution times. When interpolated, the great
majority of the curves resulted in 1024 points.

4.2. Histograms of curvature estimation errors

Figure 11 presents the typical behavior observed for the estimation error, in terms of
the scale parameters (Gaussian standard deviationσ ), with respect to 1D and 2D Fourier
methods. It should be observed that both scales in such figures are logarithmic. In order
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(a)

(b)

Fig. 12. Typical errors obtained for curvature estimation considering a series of combinations of the regularizing
parametersσ1 andσ2. Situation where the minimal error lies on the main diagonal.

to verify the possible improvements allowed by using two distinct values of standard
deviations,σ1 and σ2, respectively, as regularizing parameters for the first and second
derivatives (see Section 1), the Fourier-based methods were run for several combinations
of such scale parameters. Figures 12 and 13 present typical results, with respect to the B-
spline in Figs. 3b and 1c. These two figures illustrate the situations where the minimum
error lies on and off the main diagonal.

Since it was verified that distinct values of the standard deviations do not significantly
contribute to minimizing the errors, all the subsequent results are respective to a single
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(a)

(b)

Fig. 13. Typical errors obtained for curvature estimation considering a series of combinations of the regularizing
parametersσ1 andσ2. Situation where the minimal error lies off the main diagonal.

standard deviation; i.e.,σ1 = σ2. Figures 14–16 present the histograms of errors with
respect to the considered three numerical curvature estimation techniques, including all the
curves and quantization methods. Figure 14 was obtained for the errors produced by the 1D
Fourier-based technique without the interpolation scheme proposed in Section 2.2, in order
to allow a comparison between the distinct quantizations. Figures 15 and 16 are respective
to the 2D Fourier-based and Medioni and Yasumoto’s approaches. Figure 17 presents
the errors for Medioni and Yasumoto’s approach with respect to the several quantization
schemes.
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Fig. 14. Curvature estimation errors for the 1D Fourier-based curvature technique, without interpolation. Average
value (standard deviation)= 0.05 (±0.04).

Fig. 15. Curvature estimation errors for the 2D Fourier-based curvature technique. Average value (standard
deviation)= 0.05 (±0.05).

4.3. Parameter sensitivity

This section presents the results obtained for the quantification of the parameter
sensitivity, which is only applicable to the 1D and 2D Fourier-based approaches (Medioni
and Yasumoto’s technique does not involve any parameters). Figures 18 and 19 presents
histograms characterizing the dispersion of the scale parameters corresponding to the
minimal curvature estimation errors, with respect to the 1D and 2D Fourier methods.
Figures 20 and 21 present the histograms of the extension of the spatial scale ensuring error
not larger than 10% of the minimal error, with respect to the 1D and 2D Fourier techniques.
Figure 22 illustrates an interesting observed phenomenon for some curves (especially
those exhibit “bottlenecks”) corresponding to error peaks caused by interference between
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Fig. 16. Curvature estimation errors for Medioni and Yasumoto’s approach. Average value (standard
deviation)= 0.4 (±0.2).

(a) (b)

(c) (d)

Fig. 17. Curvature estimation errors for Medioni and Yasumoto’s approach with different quantizations: GIQ (a),
SBQ (b), scanner (c), and video camera (d).
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Fig. 18. Histogram of the dispersion of the spatial scale parameter (standard deviation) values for the 1D
Fourier-based method (without interpolation).

Fig. 19. Histogram of the dispersion of the spatial scale parameter (standard deviation) values for the 2D
Fourier-based method.

portions of the curve that, although close in the 2D space, are further away along the
perimeter.

5. Discussion

Regarding the Fourier-based approaches, the first experimental result to be verified
(refer to Figs. 12 and 13) indicated no substantial advantage in using different regularizing
scale parameters, motivating us to henceforth considerσ = σ1 = σ2. A particularly
important result regarding the Fourier-based methods is the fact that the optimal value
of σ (implying the smallest error) should be large enough to filter the spatial quantization
noise from the contour but still be as small as possible in order not to remove small scale
details from the shapes. The optimal values ofσ have been verified not to vary substantially
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Fig. 20. Histogram of the extension of the spatial scale ensuring error not larger than 10% of the minimal error,
for the 1D Fourier technique.

Fig. 21. Histogram of the extension of the spatial scale ensuring error not larger than 10% of the minimal error,
for the 2D Fourier technique.

between the different classes of curves, which is a desirable feature substantiating the
method robustness. As indicated in Figs. 18 and 19, the optimal values ofσ of more than
70% of the curves are contained in the interval[1.5, 4]. Regarding the other considered
sensitivity parameter, namely the spatial scale extension (see Fig. 7), about 80% of all
cases processed by the 1D and 2D Fourier techniques (see Figs. 20 and 21) presented an
extension larger than 10 pixels, indicating robustness with respect to the choice ofσ .

As indicated by Figs. 14, 15, and 16, the accuracy of the Fourier-based techniques
provides estimation errors consistently smaller (by an average factor of 10) than those
obtained by Medioni and Yasumoto’s approach. On the other hand, the latter technique
involves no parameter and is about four times faster than the 1D Fourier technique (see
Figs. 8, 9, and 10). The superior accuracy obtained by the Fourier methods has been
identified as a consequence of the larger neighborhood of the curve points inherently
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considered in the Fourier approaches. Other general observed tendencies included the
fact that the 1D approach considering the linear interpolation outlined in Section 2.2
provided much faster execution time than the 2D method and the 1D approach without
interpolation, which is a direct consequence of the use of the fast Fourier transform. On
the other hand, similar estimation errors and sensitivity to parametric configurations were
obtained for these two techniques (see Fig. 11). It should be also observed that while the
speed of the 2D approach depends on the size of the rectangle involving the curve, the
execution time of the 1D approach is defined by the perimeter of the curve. A particularly
interesting phenomenon, henceforth calledinterference, has been observed for the 2D
Fourier approach. As is clear in Fig. 22, curves containing bottlenecks, i.e., portions which
are close in the 2D space but distant along the perimeter, tend to produce error peaks. This
has been verified to be a consequence of the fact that the convolution mask comprehends,
especially at larger scales, not only the neighborhood of the point where the differential
operators are being estimated, but also points from the other portion of the curve. The
position of such error peaks is consequently determined by the bottleneck spatial scale.
It should be observed that this phenomenon does not imply a shortcoming for curvature
estimation, since it occurs at spatial scales much higher than that respective to the optimal
error, but can undermine scale space representations derived by the 2D approach.

Little performance variation has been observed with respect to the three classes of
curves and quantization schemes—which indicates that the GIQ and SBQ are good models
for the sampling implied by standard scanners and video cameras (see Fig. 11), at least
as far as curvature estimation is concerned. An exception has been verified for Medioni
and Yasumoto’s approach, where the SBQ has implied a much larger error than the other
quantizations (Fig. 17), since the SBQ produces more jagged contours (Fig. 5). However, in
the case of the Fourier methods, the SBQ often accounted for better accuracy, as a possible
consequence of the richer representation of the curve allowed by this quantization scheme.

6. Concluding remarks

This article has presented a formal and comprehensive comparative approach to the
numerical estimation of curvature by using two Fourier-based approaches (1D and 2D) and
the classical method proposed by Medioni and Yasumoto [6], used here in order to provide
a comparison standard. Several types of curves, including analytical parametric curves,
B-splines, and curves synthesized in the Fourier domain [29], have been considered,
and four spatial quantization schemes, namely grid intersect quantization, square box
quantization, scanners, and video cameras, have been used in order to produce spatially
quantized versions of the considered curves. Special care has been placed on choosing
curves ensuring proper representation of the analytical curvature values when represented
on the orthogonal lattice, in order to ensure that proper information would be available
for the numerical curvature estimation techniques. The performance of the estimation
methodologies has been compared according to three principal performance parameters,
execution time, curvature estimation errors, and parameter sensitivity (expressed in terms
of parameter dispersion and extension), and comprehensive experimental data have been
obtained in order to characterize each of the considered curvature estimation techniques.
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Fig. 22. Illustration of the spatial interference for the 2D Fourier-based approach.
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Generally speaking, Medioni and Yasumoto’s approach is particularly suited for
situations demanding very fast execution time, but not critical in terms of accuracy. This is
in great part a consequence of the fact that this method does not include any resource
for filtering out the spatial quantization noise. On the other hand, the Fourier-based
schemes account for particularly interesting alternatives for applications requiring very low
estimation errors. Moreover, the 1D Fourier approach is faster than the 2D, but the latter has
the advantage of allowing the curvature to be estimated not only along the original contour,
but throughout its 2D extension, which can be particularly useful in situations involving
curvature estimation for the numerical solution of partial differential equations [14].
The interesting phenomenon of interference has also been observed for the 2D Fourier
approach. By characterizing in quantitative terms the advantages and disadvantages of the
considered methods, as well as indicating suitable choice of the respective parameters,
the obtained results also provide valuable guidelines for those interested in applying the
considered techniques in real problems.
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