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ABSTRACT
Feature selection is a crucial topic in pattern recognition
applications, especially in the genetic regulatory networks
(GRNs) inference problem which usually involves data
with a large number of variables and small number of ob-
servations. In this context, the application of dimension-
ality reduction approaches such as those based on feature
selection becomes a mandatory step in order to select the
most important predictor genes that can explain some phe-
nomena associated with the target genes. Given its impor-
tance in GRN inference, many feature selection methods
(algorithms and criterion functions) have been proposed.
However, it is decisive to validate such results in order
to better understand its significance. The present work
proposes a comparative study of feature selection tech-
niques involving information theory concepts, applied to
the estimation of GRNs from simulated temporal expres-
sion data generated by an artificial gene network (AGN)
model. Four GRN inference methods are compared in
terms of global network measures. Some interesting con-
clusions can be drawn from the experimental results.

1. INTRODUCTION

Feature selection is one of the main approaches for dimen-
sionality reduction that selects a small subset of the origi-
nal features to represent the observed patterns. In genomic
expression signals (mRNA concentrations), there are two
main goals in performing feature selection [1]. One is to
eliminate irrelevant genes from the classification (or pre-
diction) in order to enhance its performance. The other
is to discover the structure of the genetic networks or the
mechanisms responsible for some biological phenomenon
of interest (e.g. progress or repression of a disease).

The cell control is a result of a multivariate activity
of genes. Thus, for disease treatment design and drugs
creation purposes, there is a strong motivation for multi-
variate interaction modeling. Genetic regulatory networks
(GRN) control a cell in the genomic level, determining the
transcription of some genes to mRNA with a variable in-
tensity (expression), which works as a model for protein
synthesis [2]. Genes and proteins act together, compos-
ing complex regulatory networks. GRNs describe these
regulatory processes and the molecular reaction of a cell

to several stimuli. High-throughput techniques for mea-
surement of RNA concentrations and proteins allow new
approaches for the study of such networks. The analysis
of these data sets requires sophisticated methods.

The genomic expressions can be derived from time se-
ries and time independent (steady state) data. This work
concentrates on the analysis of feature selection techniques
for inference of relationships among genes based on time
series data. A myriad of feature selection algorithms and
criterion functions have been proposed to infer such re-
lationships [3–6]. However, how to validate the network
identification results? One way to objectively assess such
algorithms is to apply them to computational gene net-
work models for which the mechanisms are completely
known [7, 8].

In this context, we have developed an experimental
comparison of feature selection methods based on infor-
mation theory concepts for GRN inference purpose. The
comparative study proposed here involves three methods
from the package minet implemented in R/Bioconductor
[9] and one method implemented in Java [6] which ap-
plies a classical wrapper feature selection algorithm (se-
quential floating forward selection - SFFS [10]) guided by
penalized mean conditional entropy (MCE) [5].

The ground truth for the comparison of the four used
methods aforementioned is defined by the application of
the artificial genetic network (AGN) model [8], which uses
theoretical models of complex networks [11–13] to define
the AGN topology. The dynamics of the AGN is given
by applying transition functions on an input signal. These
functions are used to simulate temporal expression data.
A similarity metric based on a confusion matrix [14] is
taken into account to compare the inferred GRNs against
the ground truth.

Next section presents a brief description of the fea-
ture selection methods used in the comparative analysis
for GRNs inference. Section 3 discusses the AGN model
to generate the ground truth and the simulated expression
signals, while Section 4 describes the similarity measures
adopted to compare the inferred and the expected net-
works. Some comparative results are presented and dis-
cussed in Section 5. Section 6 concludes this text, includ-
ing possible directions of this work.



2. FEATURE SELECTION METHODS ADOPTED
FOR COMPARATIVE ANALYSIS

We describe the assessed methods based on information
theory to infer connectivity among elements in a GRN.
The mutual information is a measure of shared informa-
tion between two variables defined by means of the en-
tropy (H):

I(Xi, Xj) = H(Xi) +H(Xj)−H(Xi, Xj) (1)

where H(Xi) =
∑

xi∈Xi
P (Xi)logP (Xi) and

H(Xi, Xj) =
∑

xi∈Xi,xj∈Xj
P (Xi, Xj)logP (Xi, Xj).

We have chosen four methods which are freely avail-
able on the Internet. Three methods are available within
the package minet under R/Bioconductor [9], while the
fourth technique is available as part of a feature selection
graphical environment implemented in Java [6].

2.1. CLR Algorithm

This technique extends the relevance networks approach
which associates an edge between two genesXi andXj if
the mutual information I(Xi, Xj) is greater than a given
threshold. In the CLR (Context Likelihood of Related-
ness) algorithm [15, 16], the mutual information is com-
puted for every pair of genes, deriving a score related to
the empirical distribution of the mutual information val-
ues. This score is given by zij =

√
z2i + z2j where

zi = max

(
0,
I(Xi, Xj)− µi

σi

)
, (2)

µi is the mean and σi is the standard deviation of Xi.

2.2. ARACNE

ARACNE (Algorithm for the Reconstruction of Accurate
Cellular Networks) [17] is based on the Data Processing
Inequality [18], which states that, if Xi interacts with Xk

through Xj , then

I(Xi, Xj) ≤ min(I(Xi, Xj), I(Xj , Xk)). (3)

The method starts by applying the relevance networks ap-
proach (associating edges to pairs of genes with high mu-
tual information [16]). After that, it analyzes each triple of
genes in order to eliminate the edge with lowest mutual in-
formation in cases where the difference between the low-
est and the second lowest mutual information is greater
than a given threshold (indirect interaction removal).

2.3. MRNET

This method [9] employs the maximum relevance / min-
imum redundancy (MRMR) [19] feature selection for in-
ference of GRNs. For every gene placed as a target (Y ),
it applies a sequential selection procedure in which, at
each step, the partial solution set Z of features is updated
by adding the feature Xi that maximizes the difference
ui − ri, where ui is the relevance term given by I(Xi, Y )
and ri is the redundancy term given by

ri =
1

|Z|
∑
Xj∈Z

I(Xi, Xj), (4)

which analyzes the redundancy of Xi to each selected
variable Xj ∈ Z.

2.4. SFFS+MCE

The sequential floating forward selection [10] is a wrap-
per approach that selects or removes a feature according
to some criterion function that evaluates subsets instead
of just comparison of feature pairs. The criterion function
adopted here is the mean conditional entropy by penaliza-
tion of rarely observed instances [5, 6] given by

H(Y |Z) = M −N
s

H(U(0, |D| − 1))+∑
z∈Z:P (z)> 1

s

P (z)H(Y |z), (5)

where D is a discrete set of values assumed by the genes
(e.g. 0,1 for binary case), U(0, |D| − 1)) is the uniform
distribution function applied to the values of D, s is the
number of data samples and N is the number of instances
z ∈ Z with P (z) > 1

s (more than one observation). Be-
cause higher mean conditional entropies lead to lower mu-
tual information, the SFFS is guided to minimize this cri-
terion function. The SFFS+MCE is applied for every gene
placed as target.

3. AGN MODEL

The AGN model [8] is composed of three main compo-
nents: (1) topology, (2) network state and (3) transition
functions. The topology of an AGN is defined by theoret-
ical complex networks models [11–13]. We have adopted
uniformly-random Erdös-Rényi (ER) and the scale-free
Barabási-Albert (BA).

The AGN model is a complex network G = (V,E)
formed by a set V = {v1, v2, . . . , vN} of nodes or “genes”,
connected by a set E = {e1, e2, . . . , eM}. It is important
to keep the same average number of connections of nodes
k for comparative analysis between ER and BA. In this
way, to keep k fixed for the ER model, the probability p
of connecting each pair of nodes is given by p = k

N−1 .
The BA topology follows a linear preferential attachment
rule, i.e., the probability of the new node vi to connect
to an existing node vj is proportional to the degree of vj .
Therefore, the nodes of ER networks have a random pat-
tern of connections and BA networks have some nodes
highly connected while others have few connections.

Each gene can assume a value from a discrete set D
(in this work, D = {0, 1}, i.e., on/off) that represents
its states. The network state s at time t is determined
by st = {v1,t, v2,t, . . . , vN,t}. The transition functions
F are defined by logic circuits, one for each gene of the
network vi,t+1 = F (uki,t), in which uki ∈ G represents
the k genes (predictors) that have input edges to vi (tar-
get). The transition functions are defined by considering
a deterministic model [20], i.e, the networks remain fixed
in the choice of k inputs nodes, chosen logic circuits and



chosen predictors, during all instants of time. The dynam-
ics of an AGN is determined by applying the transition
functions to an arbitrary initial state s0 = {v1 = 0, v2 =
1, . . . , vN = 1} during T time instants (signal size), i.e.,
the target state at time ti+1, i = 0, 1, . . . , T − 1 is ob-
tained by observing the predictor states at ti and applying
its respective logic circuit. As a result, we have the simu-
lated temporal signals of length T , which are used for the
network identification methods presented in Section 2.

4. VALIDATION METRIC

In order to quantify the similarity betweenA (AGN model
networks) and B (inferred networks), we adopted the val-
idation metric based on a confusion matrix [14] (Table 1).

Table 1. Confusion matrix. TP = true positive, FN = false
negative, FP = false positive, TN = true negative.

Edge Inferred Not Inferred
Present TP FN
Absent FP TN

The networks are represented in terms of their respec-
tive adjacency matricesM , such that each edge from node
i to node j implies M(i, j) = 1, with M(i, j) = 0 other-
wise. The measures considered in this work are calculated
as follows:

Similarity(A,B) =
√
TPR · TNR

TPR =
TP

(TP + FN)
, TNR =

TN

(TN + FP )
,

(6)

We consider the geometrical average Similarity(A,B)
between the ratios of correct ones (TPR) and correct ze-
ros (TNR), observing the ground truth matrix A and the
inferred matrix B. Observe that both coincidences and
differences are taken into account by these indices, im-
plying the maximum similarity to be obtained for indices
values near 1.

5. EXPERIMENTAL RESULTS

In this section two distinct complex network models are
confronted in order to analyze the importance of the topol-
ogy for network inference methods. Random networks
(ER) having uniform distribution on the node degree and
scale-free networks (BA) having a power law distribution
on the node degree have been tested. Another objetive
is to investigate the impact of average degree variation in
both models.

For all experiments, the two network models (BA and
ER) with 100 nodes were used. The average degree k
varied from 1 to 5 and the simulated temporal expression
were generated using 10 randomly chosen initial states,
each one with length 30. These expressions were concate-
nated into one single signal of size 300. The experimental
results present the median obtained from 50 simulations
for each network architecture and k value, using the de-
fault parameters of the methods [6, 9].

Figures 1 and 2 show the similarity (described in Sec-
tion 4) between the inferred networks and AGN-based net-

works in terms of the average node degrees by consider-
ing, respectively, ER and BA architectures. Clearly we
can observe that only SFFS+MCE method has an impor-
tant decrease of the similarity rate by increasing the av-
erage degree. This behavior was expected due to the fact
that the generated network has more connections for larger
k values, i.e., the signal of the target gene is determined
by the composition of Boolean functions from more pre-
dictors, generating sophisticated boolean functions, which
are more difficult to identify. Interestingly, the MRNET
method presents a slight improvement of results from k =
1 to k = 4 considering ER topology. Considering BA
topology, the MRNET performance behavior is inverted,
i.e., it presents a slight decreasing of the similarity rate
from k = 1 to k = 4.

Figure 1. Network identification rate considering the
increasing average node degrees, using the uniformly-
random Erdös-Rényi network architecture (ER).

Figure 2. Network identification rate considering the
increasing average node degrees, using the scale-free
Barabási-Albert network architecture (BA).

For both topologies, SFFS+MCE presents best results
for networks with small average input degree (k ≤ 3 for
ER and k ≤ 4 for BA), achieving 86% of similarity for BA
and 74% for ER, when k = 1. The MRNET performs best
for large k (k ≥ 4) for ER and k = 5 for BA. The CLR
method presents a behavior closely related to MRNET, but
presenting slightly lower similarity rates. The ARACNE
method presented the lowest results in all experiments.



An important fact to take into account by analyzing
these results is that dynamical systems like biological sys-
tems are in the frontier between non-chaotic and chaotic
behavior. The nodes of such systems present a degree of
prediction between 2 and 3 in average [21].

6. CONCLUSION

This work proposed a comparative analysis in order to
evaluate four GRN inference methods based on feature se-
lection by mutual information. We highlighted the impor-
tance of the network topology, the augmentation of aver-
age degree of nodes (complexity of the network) and the
measurement of the similarity rate of network inference
by these methods.

The results were obtained by applying the inference
methods to the estimation of GRNs from simulated tem-
poral expression data generated by an artificial gene net-
work (AGN) model. The results indicate that the network
topology was important for the SFFS+MCE method in
terms of similarity rate. The importance of topology was
also observed in other methods, especially in MRNET that
presents completely opposite similarity rate behavior from
one topology to the other.

Considering the average degree of nodes, SFFS+MCE
presents best results for both topology networks with small
average degree, while MRNET performs best for large
average degree. The CLR method presents a behavior
closely related to MRNET, but presenting slightly lower
similarity rates. The ARACNE method presented the low-
est similarity rates in all experiments. The results indicate
that SFFS+MCE is more appropriate for analysis of bio-
logical systems than the other three methods compared.

This work initiates the inference analysis by using large
number of time observations, which is desirable. In a
further work, small number of observations will be ana-
lyzed in comparison to these experimental results. The
next stage of this work is to consider complex networks
measurements [13] (local and global) in order to refine the
inference network analysis. Other relevant improvement
is to include some uncertainty in the transition functions,
i.e., to use stochastic transition functions and to measure
its effect on network inference methods. Other methods
also could be included in the comparative results.
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