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ABSTRACT

There are many algorithms to cluster sample data points based on nearness or a similar-
ity measure. Often the implication is that points in different clusters come from different
underlying classes, whereas those in the same cluster come from the same class. Stochas-
tically, the underlying classes represent different random processes. The inference is that
clusters represent a partition of the sample points according to which process they belong.
This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each
random process is modeled as its mean plus independent noise, sample points are gener-
ated, the points are clustered, and the clustering error is the number of points clustered
incorrectly according to the generating random processes. Various clustering algorithms are
evaluated based on process variance and the key issue of the rate at which algorithmic per-
formance improves with increasing numbers of experimental replications. The model means
can be selected by hand to test the separability of expected types of biological expression
patterns. Alternatively, the model can be seeded by real data to test the expected precision
of that output or the extent of improvement in precision that replication could provide. In
the latter case, a clustering algorithm is used to form clusters, and the model is seeded with
the means and variances of these clusters. Other algorithms are then tested relative to the
seeding algorithm. Results are averaged over various seeds. Output includes error tables
and graphs, confusion matrices, principal-component plots, and validation measures. Five
algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierar-
chical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to
gene-expression clustering based on cDNA microarrays using real data. Expression profile
graphics are generated and error analysis is displayed within the context of these profile
graphics. A large amount of generated output is available over the web.
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INTRODUCTION

CLUSTERING IS A POPULAR WAY OF ANALYZING DATA. There are many algorithms and, given a data
set, these algorithms may or may not be in close agreement (Jain et al., 1999). Since a clustering
algorithm forms clusters, there are various validity measures for the strengths of the clusters formed from
a given sample. These measures provide statistical support for the existence of clusters within the sample
(Theodoridas and Koutroumbas, 1999; Duda et al., 2000). It is not unusual for a researcher to look at
some visualization of the data, decide that there are valid clusters, apply a clustering algorithm, and then
infer some similarity among the elements within the clusters. This inference concerns us here. The data
comprise a sample from a set of random vectors. An inference can only be meaningful if it pertains to
the random vectors. Specifically, if clustering is being used to group observations, then it is implicit in
the formation of the clusters that they represent an estimate of some set of classes that partition the set
of random vectors from which the sample has been drawn. Our purpose is to examine the precision of
sample-based clustering relative to population inference. To accomplish this end, we will postulate a model
in which it is assumed that the full set of random vectors is partitioned into congruency classes and a
clustering algorithm estimates these congruency classes by forming clusters from the sample data. The
key issue is the degree to which the sample clusters estimate the underlying congruency classes. This is
measured by the expected number of misclassifications.

The precision of estimation will depend on several factors: the separation between congruency classes,
experimental variability, and the number of sample replications. Given the congruency classes, precision
declines with increasing variance and improves with an increasing number of replications. Here we provide
a model-based simulation approach to examine the quality of clustering algorithms relative to inference.
Beginning with a set of congruency classes, we examine a number of clustering algorithms across a range
of noise variances and sample replications. More generally, the method can be used to estimate beforehand
the number of replications necessary to achieve a desired degree of inference precision. It also can be used
to check the accuracy of a given clustering by estimating the model parameters from the observed data
and then using the model to measure clustering precision under those parameters.

The general analysis will be applied to clustering based on cDNA microarrays (Ben-Dor et al., 1999;
Bittner et al., 2000; Eisen et al.; 1998; Spellman et al., 1998; Tamayo et al., 1999). Each microarray
provides expression measurements for up to several thousand genes. One way of looking at expression
data from microarrays is to track expression levels of each gene across discrete time points 1, 2, ..., n,
so that there are n measurements corresponding to each gene. Time-series clustering groups together
genes whose expression levels exhibit similar behavior through time. Similarity indicates possible co-
regulation. Another way to use the expression data is to take expression profiles over various tissue
samples and then cluster these samples based on the expression levels for each sample. This approach
offers the potential to discriminate pathologies based on their differential patterns of gene expression. In
either application, because expression measurements exhibit random behavior across various samples, a
gene’s expression levels are modeled stochastically. The application on which we will focus is time-series
clustering. An expression time series will be modeled as a time-expression template defining the congruency
class to which a gene belongs plus random noise. We reiterate that, although we focus on a time-series
application, the evaluation analysis of clustering algorithms discussed in the paper is applicable to clustering
in general.

This paper proposes a model for measuring clustering precision, applies the model to evaluate various
clustering algorithms, and describes the fundamentals of a cluster-analysis toolbox that has been developed.
Algorithm performance will be analyzed relative to increasing numbers of replications. Since replications
for microarray applications are severely limited relative to the enormous number of variables being exam-
ined, a critical issue is quickly improving performance for small numbers of replications. The paper closes
with some theoretical considerations relating the overall approach to pattern recognition.

The output of the inference analysis discussed in this paper is extensive, both numerically and graph-
ically. A website has been set up to view the output of the analysis for several examples and provide
supplementary information, including documentation for various statistical techniques employed in the
analysis (see Appendix for website access and description).
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CONGRUENCY CLASS MODEL

Before giving a mathematical description of the congruency class model, we motivate it in terms of
identifying gene expression patterns that indicate possible co-regulation. Ignoring random experimental
error, the temporal expression profile of a gene can be viewed as a stochastic process. The specific
measurements for each observation of the profile will differ depending on both internal and external
factors regulating the expression level, including the conditions to which the cell lines are being subjected.
Formally, we can write the observed expression as

X(1) = px (1) + X, (1) )

where X, () is the stochastic displacement of X (¢) from its deterministic mean wy (¢). Since the mean of
the stochastic process is its expectation, the expectation of the displacement is 0.

We must now define the meaning of a necessary condition for two genes that are co-regulated. If X (¢)
and Y () are the expression profiles of genes g, and gy, respectively, one way to proceed is to define gy
and g, to be co-regulated, denoted g, ~ gy, if | X(z) — Y (¢)|| is sufficiently small, where the double bars
indicate some norm between two stochastic functions. The matter can be greatly simplified if we do not
consider the random displacement when defining co-regulation, but only the mean. In this case, we could
define g, ~ gy if [|ux () — py(#)|| is sufficiently small. This means that the genes are considered to be
candidates for co-regulation if their means are sufficiently close relative to the norm. An added benefit of
this approach is that, if we include experimental noise N (), which we assume to have zero mean and be
independent of the expression profile, then Equation 1 becomes

X(t) = px (1) + X, (1) + N(1) @

and the addition of the additive noise does not effect our definition of co-regulation candidacy because the
mean of the process remains the same. An obvious possible choice for the norm is to define ||ux () —ux (¢) ||
to be the maximum difference between p,(¢) and wy(¢). In practice, if we model the problem in such a
way that the number of mean functions is much less than the total number of genes, meaning there are
many genes per mean, then it is reasonable to define || x (f) — py ()| to be “sufficiently small” if it is 0.
This means that g, ~ g, if the means are identical. In sum, a congruency class is composed of a set of
genes all possessing the same mean.

From a modeling perspective, stochastic gene profiles defined according to Equation 2 depend on se-
lections of potential mean functions and a model for the random part X, (¢) + N(¢). We will lump both
stochastic terms together into a single noise term to arrive at the linear model

X(t) = px (1) + N(1). 3

This simplification has two justifications. First, at present there is insufficient appreciation of the displace-
ment characteristics for microarray data to accurately separate the noise components. Second, it simplifies
the analysis and simulation machinery. Even were there a satisfactory characterization of the stochastic
nature of expression profiles themselves, it would still be useful to use the simplified model of Equation 3
to estimate the number of misclassifications in a clustering algorithm. As will be seen, the model provides
simple spherical geometry for the clusters, affords easy visualization, is in accord with distance-based
clustering algorithms, and is describable with a small number of parameters that can be easily estimated
from real data.

Equation 3 is quantized to a finite number of time points to form the congruency class model. We
assume there are m deterministic functions of discrete time 1, 2, ..., n. Each function, called a template,
corresponds to a mean function. A template is defined by an n-dimensional vector. There are m template
vectors uy, Up, ..., Uy, each of the form wy = (uyy, ug2, ..., ug,), where uy; is the value of the kth template
at time point j. Congruency classes are defined by randomizations of uj,up, ..., u,. Fork=1,2,...,m
and j = 1,2,...,n, let Ni; be a random variable possessing a Gaussian distribution with mean 0 and
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variance akz. Assume that the collection {Ny;} is probabilistically independent. The kth congruency class,
Uy, is defined by the random vector

Xi1 ugl + Nia
X2 up2 + Ni2
Xe=| . | = ) =u; + Ny 4
Xin Uin + Nin
where Ny = (Ngi, N2, ..., Nky), Xy is Gaussian with mean vector ug, and variance vector ak2 =
(ok2, 02, e, akz). According to the model, X; and X are uncorrelated if k # j.

A random vector belongs to congruency class Uy if it is identically distributed to X. In our particular
application, each such vector corresponds to an expression time series. Hence, we will speak of genes being
in congruency classes. This means that a gene is in congruency class Uy if its expression profile is modeled
by Xj. According to our preceding remarks, genes g, and g, are co-regulated if they belong to the same
congruency class. If there are 7 genes altogether, then there are m congruency classes Uy, Ua, ..., Uy
with r; genes in class Uy, T =r{+7ry+---+7ry, and g, ~ g, if and only if they possess the same mean
among uj, uy, ..., Upy.

A single experiment produces a random sample of size ry for each the congruency class Uy. Each
is a sample of Xy. Because there are n time points, these correspond to ry points x,l, x,%, ...,x,:" in n-
dimensional space. Each sample produces T points. The statistical model for the sampling is that there are
rr random vectors Xl, X%, o, X;" identically distributed to X;. A single sample produces the determin-

istic points x},x7,...,x;*. A clustering algorithm is run on the T points x|, x7, ..., X}, X}, X3, ..., X%,

xé, x%, ..., X" We assume that the number of clusters is known beforehand and therefore the algorithm is
preset to have m clusters Cy, Ca, ..., Cy,. To analyze clustering precision, we assign clusters to congruency
classes. Cluster C; is assigned to a congruency class by voting: Cy is assigned to congruency class Uy
if the number of genes in C; from Uy exceeds the number from any other congruency class. In the case
of ties, the congruency class is chosen randomly. If there are many misclassifications, then it is possible
that different clusters may be assigned to the same congruency class. This means for error calculation that
the clusters have been joined to form a single cluster. The number of misclassifications is the number of
sample points assigned to the wrong congruency class. This number is a random variable dependent on
the sample. The misclassification error, p,, is defined as the number of misclassifications divided by the
number of sample points. We are mainly interested in the expected misclassification error, E[p,], as a
measure of clustering precision.

If an experiment is replicated N times, then there will be N measurements for each gene. We can average
these and then cluster. Since each gene in congruency class Uy has an expression profile probabilistically
identical to X, its average profile for the N experiments is modeled by the sample mean X; of X.
Whereas the variance of each component of X is akz, the variance of each component of X, is ak2 /N.
This means the clusters get tighter as the number of replications increases. Increasing the replications
should reduce the expected number of misclassifications.

INFERENCE ANALYSIS

The inference analysis we have developed uses the foregoing model to analyze the inferential precision
of a clustering procedure in terms of a collection of congruency classes. Currently, the algorithm involves
five clustering algorithms: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-
based clustering, and hierarchical correlation-based clustering (Duda et al., 2000; Jain, Dubes, 1988;
Jain et al., 1999; Theodoridis and Koutroumbasd, 1999). These are described in the appendix. Besides
misclassification error, the inference analysis also provides related statistical and graphical output to assist
in appreciation of the results.

A key motivation for the inference analysis is to examine the effect of replicates on clustering precision,
relative to the template vectors and variances. Thus, the algorithm provides an error graph giving the
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misclassification rate as a function of the number N of replicates, for N = 1, 2, 3, 4, 5, 10, 15, 20. An
experiment with N replications is called an N-experiment. The chosen breakdown of N lets one see the
effect of a small number of replicates, which may be economically and technically feasible, as well as the
long-run behavior of the clustering procedure as the number of replicates grows.

To reveal the nature of the clustering errors, as well as their overall number, a confusion matrix is
provided. It is defined by labeling the matched clusters and congruency classes in corresponding order,
and for each i and j giving the number of profiles in congruency class i that were placed in cluster j.

Since cluster dispersion is key to clustering, a two-dimensional visualization of compressed clusters is
shown. Compression is done by principle component analysis (PCA). As the number n of time points grows,
the cluster visualization using two principle components becomes less separated, but the visualization
provides a reasonably good indication of separability for moderate n. PCA gives an optimal projection of
the n-component vectors into a two-dimensional space spanned by statistically determined vectors.

A common way of displaying time-series ratio data from cDNA microarrays is to list the genes vertically
and time points horizontally, and then used discrete pseudo-colored squares to indicate the ratio (Eisen
et al., 1998). Green indicates a ratio R/G less than one, red a ratio greater than one, and increasing color
intensity reflects the degree to which the ratio is displaced from one (red labels for positive values of log
R/G, and green labels for negatives values). This profile display can provide visual indication of clustering
according to the behavior of the sample data over time. A central purpose of the inference analysis is to
see to what degree the clusters given by the sample data reflect true clustering of the underlying stochastic
processes (congruency classes). For each clustering, the various profile graphic displays are provided. The
first display has the expressions for the full gene set in the initial order (unordered), with the true class of
each gene indicated by a color in the associated tiny column. The second display has the genes ordered by
cluster (as determined by the clustering algorithm). If the clustering algorithm is hierarchical, then the third
display is the dendrogram resulting from the algorithm (associated with the second display). The fourth
display is like the second, but partitioned into m clusters, with the correct class for each gene indicated by
the color in the associated tiny column. The last display shows the mean vectors of the congruency classes
(of course, correctly grouped). The colors in the tiny column to the right of the last display indicate the
class, and these colors can be compared with the colors of fourth column that result from the clustering
algorithm. When the algorithm is not hierarchical, the second and third displays are absent.

Clusters of sample data are commonly measured according to the validity of the clusters (Jain et al.,
1988; Theodoridis and Koutroumbasd, 1999). Validity refers to the number of clusters present in the data.
If it is decided that a clustering algorithm is to determine m clusters, then it will determine m clusters.
Is the assumption of m clusters valid? Various tests have been developed in the literature. The inference
analysis provides the following validity measures for the sample data: the J1, J2, and J3 criteria, and
Hubert’s statistics with distance matrix. These are described in the website, along with references, and
they are part of the output contained in the website.

In sum, the inference analysis uses the following input data:

n, the number of time points,

m, the number of congruency classes,

uj, uy, ..., Uy, the template vectors,

r1,¥2, ..., 'm, the numbers of time series in each congruency class,

2 2

0105 an%, the class variances, and

the desired clustering algorithm.

SAINAIF I e

The inference analysis produces the following outputs:

template graphs compared with means of clusters from clustering algorithm,
error table: the number of misclassifications in terms of N,

error graph: percentage of misclassification versus N,

confusion matrix,

2D compressed data plot using principle component analysis,
cDNA-microarray profile graphics, and

validation measurements.

A i e
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One may wish to center, scale, or transform the data before applying clustering. This is outside the
scope of the algorithm and is the prerogative of the individual researcher.
To demonstrate the methodology, we first use the five synthetic templates given in the rows of the matrix

u 3 2 1 0 -1 -2 =3

u 3 2 1 0 1 2 3

wu|=10 2 2 0 =2 =2 0. 5)
uy -3 -2 -1 0 -1 -2 =3

us -3 -2 -1 0 1 2 3

We assume r; = 50 genes for each congruency class. This represents a total of T = 250 vectors (gene-
expression profiles). A common variance o> is assumed for each class. Figures 1 and 2 show 2D-PCA
plots for simulated data with increasing and decreasing class overlapping for increasing ¢ and increasing
N, respectively.

For various variances and increasing N, the precision of the clustering algorithms is shown for fuzzy
C-means, hierarchical correlation-based clustering, K-means, self-organizing map, and hierarchical
Euclidean-based clustering in Fig. 3. Curves represent averages over 50 runs of the simulation. Except for
K-means, replication helps in all cases; however, there are stark performance differences. In practice, N
will be small, often 1. The better performance of fuzzy C-means and Euclidean-distance-based hierarchical
clustering should be noted in this regard. Note that error rates for K-means clustering do not get much
below 20% even for large N.

Table 1 provides confusion matrices for fuzzy C-means and correlation-based hierarchical clustering for
the cases 0 = 2.0, N =2 and 0 = 3.0, N = 1. For 0 = 2.0, N = 2, fuzzy C-means makes very few
mistakes. For 0 = 3.0, N = 1, there are some wrong assignments of class 3 into class 1, which seems
not unlikely because of template similarity. For ¢ = 2.0, N = 2, hierarchical correlation-based clustering
does not perform too badly except for class 3, which is consistently confused with class 1. For o = 3.0,
N =1, the situation is much worse. Profiles in classes 2 and 4 are mis-clustered about half of the time,
and half of those in class 3 are mis-clustered into class 1.

To illustrate the inconsistent behavior of the K-means algorithm, we consider two simulations in which
K-means produces good results when the congruency classes are somewhat dispersed (o = 3.0, N = 10)
and bad results when they are tightly packed (o = 0.025, N = 50). These are illustrated in Fig. 4, which
shows random initialization and final clusters (partition of the space) determined by K-means: a) random
initialization, loosely packed; b) final clusters; ¢) random initialization, tightly packed; d) final clusters with
50 errors. Owing to this kind of behavior, K-means can have unsatisfactory error rates even for large N.
The results are what would be expected for hand-selected centers. These are shown in parts e through h of
the figure. To test whether these kinds of results are dependent on the particular K-means implementation
employed, other K-means implementations have been checked and similar results obtained.

For the templates in Equation 5, distances between cluster centers are fixed, and different variances
and numbers of replications have been considered. We now treat clustering performance as a function of
distance and variance, which together determine cluster separation. To make the spatial relations transparent
and to avoid PCA compression, two-point templates are used. The four parts of Fig. 5 show data plots
for the five classes at 0 = 0.15, 0 = 0.50, 0 = 0.80, and o = 1.15, with varying distances between the
templates within each part. Performance curves (N = 1) for K-means, fuzzy C-means, and hierarchical
Euclidean-based clustering are shown in Fig. 6.

According to the model of Equation 4, the variance vector for the noise Ny has equal variances, ak2 =
(ok2, o, ..., akz). This condition is in accord with the assumption of Equations 3 and 4 that the noise is not
time dependent. In practice, it means that model clusters are spherical. This condition can be relaxed so that
the variance vector takes the form of vector ak2 = (Ukzl, akzz, ol akzn). For application, as described in the
next section, this would require estimation of more parameters, nk instead of n. Since the purpose of the
model is to check the inference capability of clustering algorithms for a data set, and clustering algorithms
such as K-means and fuzzy C-means depend on n-dimensional Euclidean distance, the spherical assumption
appears reasonable. Nonetheless, one could assume unequal variances within a class. To illustrate the effects
of unequal variances, we use two-point templates. In addition, only two templates, (0, 0) and (0, 3), are
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used so that the geometric effect of different variances is clear. The standard deviations used are 0.05,
0.25, 0.5, 0.75, and 1. Six pairs of covariance matrices are considered. Each yields a different clustering
geometry. The six types are defined by the following pairs of covariance matrices:

- 1 012 0 d 022 0
e 1: an

P 0 012 0 022

Tooe 2 307 0 . o7 0
e 2: an

yp ) 0 o 22

T 3 012 0 d 022 0
e 3: an

P 0 30} 0 o3

T 4 012 0 d 022 0
e 4: an

P 0 3o

) 2

2)
2
367 0 307 0

Type 5: ) and )
1 0 o

Toee 6 367 0 ‘ o7 0

c O an
P 0 o} 0 30}

Sample data for types 3 through 6 are shown in parts a through d of Fig. 7, respectively. Each part
shows three cases, for the variances oy = o, = 0.5, 0y = 0 = 0.75, and 0y = 0 = 1. Parts a
through d of Fig. 8 show performance curves for types 3 through 6, respectively, with each part containing
curves for K-means, fuzzy C-means, and hierarchical Euclidean-based clustering. Sample-data plots and
performance curves for types 1 and 2 have not been shown because type 1 involves equal variances and
performance for type 2 is very similar to that of type 1. These are shown in the website. It is interesting
to note that, when there are only two classes, we do not observe the inconsistent behavior of the K-means
algorithm.

APPLICATION

Application of the inference analysis to real data requires estimation of the model parameters from
the data. Once these parameters have been estimated, the algorithm can be run to predict the expected
numbers of errors based on the various algorithms and the number of replications. Intuitively, the algo-
rithm gives the number of errors one would expect given the data. The problem here is that the algorithm
requires the means and variances for the congruency classes, and the raw data does not include con-
gruency classes. We proceed by applying a clustering algorithm to the raw data to form congruency
classes with which to seed the algorithm. For instance, we might seed the model by applying fuzzy C-
means to form seed congruency classes, and then apply clustering algorithms to the model based on those
classes.

Suppose there are g clustering algorithms Ay, A», ..., A, and m congruency classes. A selected clus-
tering algorithm Ay is used to form m clusters, which are then identified as seed congruency classes,
Uk1, Uz, ..., Ugm. The model is seeded by computing the means and variances from Uy, Uy, ..., Ukn.
The inference analysis can then be run using the various clustering algorithms Ay, Az, ..., A;. Depending
on the number N of replications, the algorithm will produce expected error rates of Ry1(N), Rxpa(N), .. .,
Ry4(N) corresponding to Ay, As, ..., Ay, respectively. These error rates correspond to seeding by algo-
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FIG. 3. Error graphs.

rithm Ay, and are dependent on this seeding. For each k, a graph can be computed as a function of N
to show the effect of the number of replications on the error rate. Altogether, the error rates form an

error matrix

R11(N) Rpp(N) -+ Ryg(N)
R21(N) Rxn(N) -+ Ryy(N)

R(N) = . . ) . (6)
qu(N) Rq2(N) qu(N)

The entry Ry;(N) gives the error rate for algorithm A; under model seeding by Ay.
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TaBLE 1. MEAN CONFUSION MATRICES FOR EACH CLUSTERING
METHOD FOR THE SYNTHETIC DATA

(a) Fuzzy C-means with o= 2,N=2

Cluster/class 1 2 3 4 5 SUM
1 49.34 0.04 0.86 — — 50.24
2 — 49.96 0.02 — — 49.98
3 0.66 — 49.12 0.02 — 49.8
4 — — — 49.98 0.06 50.04
5 — — — — 49.94 49.94
SUM 50 50 50 50 50
Mean Error = 1.66
(b) Fuzzy C-means with o= 3,N=1
Cluster/class 1 2 3 4 5 SUM
1 45.16 0.4 10.34 0.3 — 56.2
2 0.46 48.46 3.12 — 0.66 52.7
3 32 0.46 32.97 0.7 0.12 37.45
4 1.18 — 2.82 48.1 0.72 52.82
5 — 0.68 0.74 0.9 48.5 50.82
SUM 50 50 49.99 50 50
Mean Error = 26.8
(c) Correlation Hierarchical Clustering with o2 = 2,N=2
Cluster/class 1 2 3 4 5 SUM
1 46.28 0.94 30.2 0.78 — 78.2
2 0.14 46.56 0.22 0.24 0.08 47.24
3 3.58 0.66 18.89 0.57 — 23.7
4 — 0.18 0.66 47.26 0.26 48.36
5 — 1.66 0.02 1.13 49.66 52.47
SUM 50 50 49.99 49.98 50
Mean Error = 41.34
(d) Correlation Hierarchical Clustering with o2 = 3,N=1
Cluster/class 1 2 3 4 5 SUM
1 36.82 6.02 19.66 10.28 0.14 72.92
2 3.9 20.14 5.96 1.5 2.36 42.86
3 6.84 4.38 18.66 4.28 1.13 35.29
4 2.34 1.84 3.9 23.8 2.24 34.12
5 0.1 8.61 1.82 10.14 44.12 64.79
SUM 50 49.99 50 50 49.99

Mean Error = 97.46
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It seems intuitive that the seeding algorithm should be favored when the clustering algorithms are applied
to the model. Under fuzzy C-means seeding, one might think that fuzzy C-means will outperform K-means.
While this initialization advantage is often the case, it may not be if the seeding algorithm has poor inference
capability. K-means performs poorly in our model, and fuzzy C-means generally outperforms K-means
when the model is seeded by K-means.
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s

To get an overall view of an algorithm’s performance, one not so dependent on seeding, we can compute
the various error rates for each seed and average the algorithm’s performance over all seeds to obtain the
global error rates Re1(N), Re2(N), ..., Reg(N), where

1 q
Rej(N) ==Y Rij(N)
q k=1

(M
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is the average performance of algorithm A ; over all seeds. A slight modification occurs if one does not wish
to average over all seeds, but only over a subcollection of seeds. For instance, owing to its generally poor
performance, one might not wish to include seeding by K-means. In this case, the error rate corresponding
to seeding by K-means is omitted from the average.

There are some considerations concerning variances for seed congruency classes. Consider the seed
congruency class Uy;, the i™ congruency class for the k™ seeding algorithm. For the n time points, there
are n means. Each of these is formed by the sample mean of the values at a time point of the profiles
within the congruency class. Variances can similarly be formed from the sample variances at each time
point. Alternatively, if some of the congruency classes are small, one can form the pooled variance over
all time points. This results in all time points having the same model variance, but it avoids poor variance
estimates for small classes.

To illustrate application, we use data published by Iyer ef al. (1999) from an experiment to see the
response of human fibroblasts to serum. The number of genes used in the original microarray is 8,613,
which includes about 4,000 “named” human genes and another about 4,000 “anonymous” UniGene clusters
on the basis of inclusion on the human transcript map and the lack of apparent homology to any other
genes in the selected set. The original clustering analysis used only 517 genes from the microarray (and
we use the same 517 genes). These were selected if either (i) their expression level deviated from that in
quiescent fibroblasts by at least a factor of 2.20 in at least two of samples from serum-stimulated cells,
or (ii) the standard deviation for the 13 time-point values of logs(expression-ratio) measured for the gene
exceeded 0.7. In addition, observations in which the pixel-by-pixel correlation coefficients for the Cy3 and
Cy5 fluorescence signals measured in a given array element were less than 0.6 were excluded.

We consider five and nine clusters, and seeds based on the five algorithms. For five clusters, Fig. 9 shows
means (templates) for the seed congruency classes arising from self-organizing-map (SOM) clustering,
along with the number of genes to be simulated in each seed class. To have sufficient data for small
classes, simulations use twice the original cluster sizes. Time-point variances are pooled for each class.
Simulated data based on the templates and their variances are shown in 2D-PCA space in Fig. 10 for
differing numbers of replications. The first PCA plot (N = 1) portends the danger of not using replication.
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This is verified in Fig. 11 where error curves (average of 50 simulations) are shown for the five clustering
algorithms applied to the SOM seeds. Fuzzy C-means, K-means, and SOM perform tolerably for a single
replication. Their errors are in the 10% range. The other two algorithms have errors in the range of 40%.
The good news is that for only two replications, the errors for fuzzy C-means and SOM fall to only
5.5% and 2.5%, respectively. For three replications, the error for correlation-based hierarchical clustering
remains high at 22%. Misclassification errors for the five algorithms averaged over all five seeds are shown
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in Fig. 12. Once again, fuzzy C-means and SOM do well for very few replications. A similar graph using
only fuzzy C-means, SOM, and hierarchical Euclidean-distance-based clustering is given in Fig. 13. The
website contains confusion matrices for all five algorithms using SOM as the seed. It also includes the full
analysis for all five seeds.

The issue of poor inference with decent-looking clusters is illustrated in Fig. 14. It shows an expression-
profile dendrogram for hierarchical correlation-based clustering with SOM seeding for three replicates. The
genes are listed vertically. Their expression ratios are listed horizontally. High ratios, low ratios, and ratios
near 1 are indicated by strong red, strong green, and faded colors, respectively. In the next to last column,
the graphic seems to visually indicate decent clustering. When the clusters are aligned with the congruency
classes, many errors are seen. In fact, the error rate is 20.8%. Dendrograms for one and two replications
are in the website. This kind of example shows that one must be cautious about drawing inferences from
sample clusters.

PATTERN RECOGNITION INTERPRETATION

The intent of this paper is to discuss clustering inference relative to congruency classes. From a pattern-
recognition viewpoint, clustering is a kind of data-dependent partitioning. This section considers the analysis
in terms of partitioning based on minimizing the Euclidean distance error.

The clustering model relates to separation of the distributions of the random vectors defining the congru-
ency classes, and clustering is relative to sample points for the random vectors. The mixture distribution
defined by these vectors (taken in proportion to the sizes of the congruency classes) characterizes the
random vector X determining the partition of n-dimensional Euclidean space %", and the cluster error can

be measured in terms of the distribution of X. Given a random sample X, X», ..., X7 for X, the points
aj,as,...,a, are chosen to minimize the distance error
1 L
* : 2
er(by,b2,....b,) == min || X; —b; 8
7 ( m == min [Xc — b ®)
k=1
over all possible choices of the points by, by, ..., by,. The points aj, a, ..., a, define a Voronoi partition,
V = {Vi, Va,..., V}, of N": a point lies in Vj if its distance to a; is no more than its distance to any
other of the points aj, ay, ..., a,. Cluster Cy consists of all sample points in V.
Now suppose the observations are labeled, meaning there is a joint probability vector (X, Y) defined
on N" x {0,1,...,m}, and we wish to estimate the optimal classifier W[W(X) being an estimator of

Y] based on the sample points (Xq, Y1), X2, Y2), ..., (X7, Y7). Having partitioned %" according to the
minimization of e}, a classifier W7 can be defined by majority vote. For any point X, let V7 (X) be the
member of the partition containing X and define W7 (X) to be determined by voting among the labels for
X1, Y1), X2, Y2), ..., (X7, Yr). Thus, a label is associated with each member of the partition. For each
point X, W7 (Xy) is the label associated with the partition member containing the cluster including Xj.
This agrees with the way we have assigned clusters to congruency classes to compute the misclassification
error. In that case, the cluster, Cr(Xy), containing Xy is assigned to the congruency class U; by voting
among the congruency classes represented by points in Cr(Xy). The congruency classes determine the
labels, a classifier W is determined, the values W7 (X1), ¥7(X2), ..., Y7 (X7) are determined, and the
misclassification error, pr (X1, X3, ..., Xr), is the number of sample points for which W7 (Xy) # Y,
where Y is the label of the congruency class containing Xy. The expression pr(Xi, Xa, ..., X7) is the
number of errors W7 makes on the sample data. It is the usual resubstitution estimate for the error of Wr.
It tends to underestimate the true error of Wy as an estimator of Y.

We focus the analysis on the case of two congruency classes, Up and Uj. In this case, the label space
is {0, 1}, W is the binary Bayes classifier, and the error of W is the Bayes error, ¢*, for the distribution of
(X, Y). The true error, e7, of Wy serves as an estimate for £*. The classifier Wy is strongly consistent as
an estimator of Y so long as the distribution of X has compact support and the number of clusters grows
in a constrained manner in accordance with the number of samples. Specifically, let k7 be the number of
clusters for T samples. If k7 — oo and k%T‘1 logT — 0 as T — oo, then e7 — &* with probability
one as T — oo (Lugosi and Nobel, 1996). While powerful and interesting, this result does not appear to
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be useful for our context. Not only is 7 limited, but we do not necessarily want to increase the number of
clusters as n grows.

We have witnessed poor performance for the K-means algorithm. The K-means algorithm is designed to
find points a;, a,, ..., a,, that approximate the points aj, a2, ..., a,, that minimize the empirical Euclidean
distance error of Equation 8. This approximation is dependent on seeding the algorithm, and performance
depends on the particulars of the algorithm employed, as well as the data sets involved. Were the algorithm
to actually find points ay, ap, ..., a, that minimize the empirical error, then performance would be much
better. For instance, in tightly packed and separated clusters that result from a large number of replications,
one would do very well by selecting points interior to the clusters. The difficulty is in finding an algorithm
to accomplish this end.

We close with a comment on the relationship between the empirical distance error of Equation 8 and
the true clustering distance error. The true error is given in terms of the distribution of X. For the points

aj,ap, ..., a, that minimize the empirical distance error, the true distance error is
. 2
eT(ala aza M am) = E[ 1?12 ”X - a]” |X15 Xza M XT]' (9)
=Jj=m

This expectation is conditional relative to the sample points and is approximated by the empirical distance
error e; (a1, ap, ..., a,). The empirical and true distance errors may differ significantly for small samples;
however, if there exists a compact set K such that P(X C K) = 1, then their difference converges to zero
with probability 1 as T — oo (Linder et al., 1994).

CONCLUSION

Given either synthetic templates, or when seeded by data, the proposed statistical model can be used
to evaluate clustering inference precision relative to variation and replication. This is a key issue when
trying to draw inferences regarding similarity of behavior based on clusters. As might be expected, lower
variance and more replications tend to yield greater precision. The procedure can be employed to determine
which clustering algorithms appear to work well for the data at hand, as well has how many replications
are necessary to achieve a desired level of performance. The entire toolbox is being made available in an
interactive web-based implementation at the National Human Genome Research Institute that will allow a
user to download data, choose a seeding algorithm (or algorithms), and get all of the output as it applies
to the data.

APPENDIX A: WEBSITE

Supplementary information is provided at http://gspsnap.tamu.edu/clustering/jcb/. To access the site, use
clustering as both the account name and password. Detailed descriptions of algorithms and validation
measures, annotation of graphics, a bibliography, and explanation of K-means behavior can be found by
clicking on the Algorithms, Validations, Graphics, References, and K-means links, respectively.

The main web page consists of two simulations using real data, one with five templates (clusters) and the
other with nine templates, and a third simulation with synthetic templates. For the first two simulations, as
described in the paper, five different initial clustering methods have been used to generate initial templates,
microarray data have been simulated for each template, and clustering analysis has been done using five
different clustering methods. Output, including template means and variances, misclassification errors,
confusion matrices, and validation measures, are tabulated and graphed in each section as the number, N,
of replicates increases.

For each template generated by an initial clustering method, the Information page shows how the
experiment is set up, templates with means and variances, and sample size. The Errors page shows the
empirical expected values (average value over 50 repetitions) of misclassification errors, confusion matrices,
and three different validation measures for each clustering method. The Examples page shows, for each
clustering method, a clustering analysis including PCA projection maps, (dendrogram-like) clustering
maps, templates recomputed after the clustering, confusion matrices, misclassification errors, and validation
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measures for instances of simulated data, for different replicates. The Graphs page is a collection of all
graphs, and the Export page is for users who want to download the input and output data to their local
machines.

APPENDIX B: CLUSTERING ALGORITHMS

K-means

In the K-means algorithm, each sample point is placed into a unique cluster during each iteration, and
the means are updated based on the classified samples. Given a set S of n sample points, those points are
to be placed into k clusters with k means m1, m2, m3, ...mk. Algorithm implementation: For each point
s of §, calculate the distance d(s,mi), for i = 1,2, ..., k; let m_min be the nearest mean (i.e., d(s, mi)
is minimum); set m_min = (m_min + s)/2; and repeat until mi does not change fori =1, ..., k.

Fuzzy C-means

Fuzzy C-means is a variation of K-means in which sample points have a degree of membership (or a
probability of belonging) in each cluster, and the respective means are calculated based on these probabil-
ities. Let P(w; : x;) be the probability of the j-th sample belonging to the i-th cluster. For ¢ clusters and
a parameter b, this is calculated from the trainning data by

(1/llx; = mg /G0

c

> o/ xj = m e

r=1

P(a)i I)Cj):

(AD)

=

[P (w; @ x;)]°x;
j=

Y [P xp)
j=1

(mean of the i-th cluster). (A2)

S| ==

m; =

Algorithm implementation (Duda et al., 2000): For each point s of S, compute the distance d(s, mi),

for i = 1,2,...,k; assign s to the cluster associated to the nearest mean (i.e., d(s,mi) is minimum);
recompute means m1, m2, m3, ..., mk according to Equation A2; recompute all probabilities P (w; : x;)
according to Equation Al; repeat until mi, for i =1, ..., k, and P(w; : x;) do not change.

Self-organizing map

The SOM implements competive learning in neural networks. In competitive learning, the neurons re-
ceive identical input information and compete in their activities. The SOM defines a net of points that
aproximates the density function of the input signal. There is a set of representatives wy, ..., wy, in the
gene-expression space and a simple topology defines neighborhoods. A distance measure is used to assign
points of the space to the nearest representative. For each sample point, the nearest representative wg is
selected, after which wq and the representatives in a neighborhood of wy are updated. Algorithm implemen-
tation: set + = 0; randomly initialize the representatives wy, ..., w,,; repeat the following procedure until
convergence or ¢ > I, and then assign each sample point to the representative closest to it: set t = ¢+ 1;
randomly select a sample point; determine the nearest representative wg; update wi, ..., w, according to
the rule

wi (1) = wi(t — 1) +n() f(D(w;, wo), 1) (x — w; (t — 1)) (A3)

where 7(¢) is a variable learning rate, D is a distance between cells defined by the topology of the net,
and f is a funtion defining the neighborhood. We have used the algorithm implemented in the toolbox
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nnet of Matlab, using 2,500 iteractions to train the net. The topology used is a line, not a grid, with N
points, where N is the number of clusters to be computed. The learning rate has an initial value of 0.9
and decreases 0.02 in each iteraction.

Hierarchical clustering

Hierarchical clustering creates a hierarchy representing sample proximity in the feature space. It depends
on the distance between samples and the distance between clusters. Three common cluster distances,
yielding three variations of the algorithm, are given by:

single-linkage algorithm: d(Ci, Cj) = min{d(a, b)},
aeCi,beCj

complete-linkage algorithm: d(Ci, Cj) = max{d(a, b)},
aeCi,beCj

average-linkage algorithm: d(Ci, Cj) =

> d(a.b),

ni X nj
J aeCi,beCj
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where ni and nj are the number of samples of clusters Ci and Cj, respectively. An alternative approach
is to use the distance between the mean values of each cluster. In the experiments, we have used the
three ways defined. Also, we have used three different distance measures: centered correlation, uncentered
correlation, and Euclidean distance. Algorithm implementation: start with a feature space with n samples;
initialize n clusters Ci, i = 1,2, ..., n, each cluster consisting of one sample point; for i = 1 ton — 1,
merge the nearer clusters Ci and Cj.
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