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Abstract

This work describes a novel methodology for automatic contour extraction from 2D im-
ages of 3D neurons (e.g. camera lucida images and other types of 2D microscopy). Most
contour-based shape analysis methods can not be used to characterize such cells because of
overlaps between neuronal processes. The proposed framework is specifically aimed at the
problem of contour following even in presence of multiple overlaps. First, the input image
is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches,
as well as a set of critical regions (i.e., bifurcations and crossings). Next, for each subtree,
the tracking stage iteratively labels all valid pixel of branches, up to a critical region, where
it determines the suitable direction to proceed. Finally, the labeled skeleton segments are
followed in order to yield the parametric contour of the neuronal shape under analysis. The
reported system was successfully tested with respect to several images and the results from
a set of three neuron images are presented here, each pertaining to a different class, i.e.
alpha, delta and epsilon ganglion cells, containing a total of 34 crossings. The algorithms
successfully got across all these overlaps. The method has also been found to exhibit robust-
ness even for images with close parallel segments. The proposed method is robust and may
be implemented in an efficient manner. The introduction of this approach should pave the
way for more systematic application of contour-based shape analysis methods in neuronal
morphology.
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1 Introduction

Neurons can be understood as cells specialized in interconnections, which are im-
plemented through synapses extending from axonal to dendritic arborizations. Though
the connectivity of mature neuronal systems may seem to be stable, it is actually
subjected to continuing re-organizations influenced by stimuli presentation and bi-
ological changes. The number of connections which a neuron may receive is to a
large extent defined by the shape of its dendritic tree, which serves as a target for
growing axons. As a consequence, the full understanding of the functionality of
neuronal circuits requires the proper characterization of the neuronal morphology
(e.g. [7, 9, 20]). Among the several approaches based on the characterization of the
geometry and connectivity of neuronal cells [3, 9, 14, 19, 20], a particularly impor-
tant and broad set of shape analysis algorithms relies on a parametric representation
of the neuronal shape [8], i.e. in the form c(t) = (x(t), y(t)). 1 . The proper contour
extraction of 2D neuron images yields parametric signals, from which features can
be calculated and used to characterize differences between neuronal shapes. De-
spite the availability of algorithms to extract parametric contours from digital im-
ages, they can not be applied directly in neuroscience because of the intense overlap
(crossings) which is frequently observed among the neuronal processes. In order to
better appreciate this limitation, please refer to Fig. 1.

Often, the 3D neurons are projected into the 2D space (e.g. camera lucida and sev-
eral types of 2D microscopy), so that the contour of the cells can, in principle, be
represented as 1D parametric curves [12] (Fig. 1(a)). Important information, such
as the normal and/or tangent orientation fields along such contours, as well as the
arc length of each segment, can then be obtained, allowing the estimation of impor-
tant geometrical properties such as the contour curvature and wavelets (e.g. [5, 9]),
which are known to provide particularly valuable information about the shape of
the neuron, including its bending and concavity. Another possible application of
contours in neuroscience is as a means to automatically obtain neuronal dendro-
grams [6]. However, such an approach is often complicated by the presence of
crossings between the neuronal processes in the 2D image, implying some regions
of the cell to become inaccessible for traditional contour extraction algorithms (see
Fig.1(b)). Henceforth, we refer to such inaccessible contour portions as the inner-
most regions of the shape. In brief, most contour following algorithms work as
follows. Firstly, the algorithm detects an initial contour pixel. Then, the algorithm
searches the next contour pixel, by probing the current contour pixel vicinity. The
algorithm travels around the whole object, until revisiting the first pixel, once the
task has been completed. Further details can be found in the full description of such
methods in [8].

In contour following algorithms, it is usually impossible to traverse the innermost

1 For instance, a circle may be represented as c(t) = (x(t), y(t)) = (cos(t), sin(t))
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regions delimited by crossings (due to the 3D to 2D projection). Consequently, only
the outer contour of the cell is represented, thus missing the innermost structures.
This fact is illustrated in Fig. 1(b), where the light gray shaded innermost regions
represent areas inaccessible to traditional contour following algorithms, thus yield-
ing just the red curve as the respective contour.

It should be observed that, in principle, 3D imaging is naturally better than 2D
imaging because it contains more information about the acquired structure. How-
ever, 3D imaging intrinsically demands additional computational resources, espe-
cially for the enhancement and interpretation of the structures. In addition, in cases
where the original neurons are mostly planar, such as the ganglion cells in the
retina, the 3D capture often contributes little to the separation between thin cross-
ing segments, which are mostly contained within a narrow range of z-coordinates.
Another reason why 2D imaging remains valuable in neuroscience concerns the
fact that not all types of microscopy can be performed in 3D. Finally, many 2D
neuron imaging systems and images are already available (e.g. camera lucida im-
ages from previous experiments and published literature), so that research using
such images would also benefit from the introduction of the methodology proposed
in the present paper.

(a) (b)

Fig. 1. (a) Example of 2D neuron image considered in this work. (b) Neuron image (black)
and respective contour (red) as provided by a traditional contour following algorithm. The
light gray shaded areas represent the innermost regions that remain inaccessible for such
algorithms.
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Despite the importance of the problem of contour extraction from 2D neuron im-
ages, we were not able to find any related approaches in the literature. To the best
of our knowledge, the only similar work in the literature was described in [21, 22],
which presents a semi-automatic method to separate veins and arteries in the vas-
cular trees of fundus images. In order to solve such a problem, it is necessary to
label the vessels, which are also branching structures. Firstly, a skeleton image
is obtained from the vessel trees. The skeleton is then represented as a vascular
graph named G, which comprises all the information regarding the connectivity
among critical regions and branches segments. Subsequently, that method propa-
gates the labels manually assigned to other vessels throughout the vascular graph
G. In this case, it is well-known that crossings only take place between a vein and
an artery, thus such a priori knowledge on the vessels structure is used to simplify
the approach, determining that opposite branches segments in a crossing should
be necessarily equally labeled. Such assumptions make this approach specific to
the vein/artery tracing problem. Alternatively, neighbouring branches segments in
a crossing should be labeled with distinct tags. Although there are some similari-
ties between the approaches reported in [21, 22] and in the current article (mainly
concerning the use of skeletons and case analysis of bifurcations and crossings),
the latter methodology adopts a different and potentially more general approach.
Since the aforementioned system has been specially designed for vascular trees,
the number of labels available to be assigned is bounded to two: veins and arteries.
Conversely, our algorithms yield assignments of a distinct label for each existing
branch and also a distinct label for each dendritic tree, regardless of the number of
existing dendritic trees in the neuron. Also, by segmenting each branch within the
image, our method allows the branches to be counted as well as the lengths of the
segments to be measured. In contrast to the Rothaus’ system, ours solely carries out
local assessment of the image topology in a sequential-like fashion, without graph
representations, thus avoiding the backtracking step. Furthermore, our system pro-
vides the parametric contour of the whole structure, being thus possible to extract
several geometrical features to be fed to a classifier.

Also, the results reported in our work can also be useful for the unsolved 3D cases
by confocal microscopy. In addition, there are more important aspects regarding
the importance and applicability of our contribution, and these are as follows.
First, there are dozens of other microscopic techniques which cannot yield 3D,
but only 2D images, necessarily implying tangling of neuronal branches which can
be treated by our method. Such microscopy techniques are often required instead
of confocal microscopy because they can reveal specific properties of the analyzed
tissues and structures which cannot be imaged by confocal methodology.

Moreover, as already mentioned, the proposed methodology is quite general and
may be applied to other branching structures.

The rationale of the present work is to deal with neuronal overlaps by incorporating
several criteria such as the use of similarities along the tangent orientation as a
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means to identify the proper continuation of the neuronal processes at crossing-
points. The proposed methodology is composed by the subsequent application of
the following three algorithms:

(1) Preprocessing
(2) Branches Tracking Algorithm (BTA)
(3) Branching Structures Contour Extraction Algorithm (BSCEA)

In short, the BTA is an algorithm aimed at the segmentation of each distinct branch
within a 2D neuron image other than the soma and intercepting regions. The BSCEA
is an algorithm intended to the extraction of the parametric contour from a 2D neu-
ron image, based on the BTA.

For clarity’s sake, this paper is presented in increasing levels of detail, hence devel-
oping as follows. Section 2 contains an overview of the proposed framework, which
is further detailed in Section 3. Experimental results considering real neuronal cells
are presented in Section 4. The paper concludes in Section 5, by identifying the
main contributions, as well as possibilities for future works. Low level descriptions
has been left to the Appendices A.2 and A.1.

2 Preambule

Usually, an optical acquisition device yields an image as output, corresponding to a
summary and incomplete representation of the information originally present in the
original object [4]. As a result, images are normally devoid of some information,
such as related to depth, a problem arising from the supression of the third dimen-
sion in the 3D original object as implied by its object projection onto the 2D plane.
In the context of complex shape images, like neurons, depth information is of ex-
treme importance to properly discern the structures in the image. The current work
approaches this problem, more especifically the extraction of contours of neuronal
cells imaged onto 2D frames. In particular, the 2D neuron images used herein have
been obtained through a camera lucida device.

2.1 Terminology

Initially, our approach considered the existence of only two types of structures
among branches, namely bifurcations and crossings. However the number of ad-
jacent segments at each critical region proved not to be enough to properly classify
them, leading to misclassifications. Only through the incorporation of additional in-
formation, namely the identification of several geometrical features along the neu-
ronal shape, it has been possible to achieve correct classification of the critical re-
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Table 1
Summary of concetps.

TERM DESCRIPTION

Points

seed
primary origin of a segment stemming from the soma

secondary origin of a segment stemming from a critical region

termination end point of a branch

Lines

segment line of pixels delimited by other structures

inward segment incoming segment at a critical region

outward segment outgoing segment from a critical region

branch string of segments

Critical Regions (CR)

bifurcation
cluster of pixels where an inward segment splits into

two; one of which in other direction

crossing
cluster of pixels where an inward segment splits into

three; two of which in other direction

superposition
cluster of bifurcations where an inward segment splits

into three; two of which in other direction

Collections

dendritic arbour collection of branches growing out of soma

periphery collection of dendritic arbours (excluding soma)

skeleton one-pixel wide skeleton from the periphery

gions. The neuronal shape can be described as the union of its constituent parts, i.e.
soma, dendrites or dendritic arbours and axon. In order to elaborate on the explana-
tion of our methods, we extend such a terminology. Notice that it does not refer to
additional functional parts in neurons, but rather to morphological building blocks
which compose those functional parts in their respective 2D images. As a matter
of fact, some structures such as crossings and superpositions do not even occur in
a real 3D neuron, being just an immediate consequence of the projection from the
3D space onto the plane or their close proximity even in 3D spaces. Hence, the
arbours present in 2D skeletons obtained from neuron images are subdivided into
their morphological constituent parts as follows (see Fig. 2 and Tab. 1):

• Points
• Lines
• Critical Regions
• Collections
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Fig. 2. Extended terminology adopted in this work: dendrites, soma, branches, segments,
seeds, terminations and critical regions.

The aforementioned categories of structures encompass the typical structures which
usually appear in 2D neuron images. Such structures must be distinguished so as to
provide additional information about the original neuronal shape, therefore allow-
ing more general and effective performance.

The category Points comprises three classes of extremity points: primary seeds,
secondary seeds and terminations. Each extremity point is classified regarding its
location, i.e. a primary seed corresponds to a junction point between a dendritic
tree and the soma, while a secondary seed refers to a junction point between a
critical region and a dendritic subtree. Basically, the difference between a primary
seed and a secondary seed is that a primary seed is necessarily adjacent to the soma,
while a secondary seed is not. Terminations are end points of branches. The reason
for distinguishing between points is that the tracking starts from the primary seeds
and finishes at terminations, occasionally repeating itself in a recursive-like fashion
from secondary seeds.

The category Lines encompasses two cases: segments and branches. Each line is
classified with respect to its extremity points, i.e. a segment may grow out from
either a primary or a secondary seed, but does not necessarily end at a termination.
Segments are lines of pixels delimited by a pair of minor structures, for instance a
seed and a critical region, or two critical regions, or a critical region and a termi-
nation. Conversely, a branch may stem from either a primary or a secondary seed,
ending necessarily at a termination. It follows from such a definition that a branch
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is a ramification made up of a string of segments, growing out of a seed up to a
termination, as shown in Fig.2. In addition, segments may be further subclassified
depending on their relationship to an adjacent critical region. By analyzing a neuron
shape from inside out, that is, from the soma towards its terminations, an incoming
adjacent segment to a critical region is said an inward segment, while an outgoing
adjacent segment to a critical region is said an outward segment. The reason for dis-
tinguishing between lines is the need to recognize the constituent parts (segments)
of branches every time the tracking algorithm reaches a critical region. Adjacent
segments which present tangent similarity should be regarded as part of the same
branch. Segments and branches play different roles in the tracking algorithm, thus
deserving distinct names.

Critical Regions are clusters of pixels where branches meet each other. This cate-
gory includes three classes of regions: bifurcations, crossings and superpositions.
Each Critical Region is classified by considering its shape, the number of segments
adjacent to it and their mutual orientation relationship, as well as the proximity
relationship between the current critical region and other regions nearby. On a bi-
furcation, an inward segment often separates into two outward segments with dif-
ferent orientations, as depicted in Fig.4-(a-b). Occasionally, bifurcations may occur
very close one another. Viewing such regions from a larger scale would suggest just
one critical region, where an inward segment splits into three outward segments, as
shown in Fig.4-(c-d). Similarly, on a superposition, an inward segment splits into
three outward segments, two of them in normally distinct and opposite orienta-
tions, as can be seen in Fig. 4-(e). If superpositions are not considered, they could
be locally misunderstood as two very close bifurcations attached by a tiny segment.
Finally, a Crossing Region is a cluster of pixels where an inward segment splits
into three outward segments, two of them in quite distinct and necessarily opposite
orientations, as shown in Fig.4-(f).

Though all critical regions share the property of being formed by pixels with neigh-
borhood greater than two, their shape structure are quite different. The reason for
distinguishing between critical regions is to assure that both the tracking and the
contour extraction algorithms behave as expected whenever such structures are
found. The algorithms undergo different processings for each kind of critical re-
gion.

At this point, it is worth emphasizing the difference between a crossing and a su-
perposition: although both share the property of having an inward segment splitting
into three outward segments, their shapes are slightly different. Notice that a cross-
ing appears as just a cluster of pixels, while a superposition is apparently made up
of two clusters of pixels (bifurcations) attached by a short line. In spite of the fact
that both structures have been originated from overlapping processes, the angle of
inclination between these processes plays a central role, in that the steeper the slope
between them, the greater the chance of obtaining a crossing, while the smoother
the slope between them, the greater the chance of obtaining a superposition, as
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illustrated in Figure 3.

Fig. 3. The dependence between the angle θ of inclination between intercepting branches
(yellow) and the shape of the respective critical region (red). Observe that as θ decreases,
more elongated the critical region becomes.

The category Collections simply represents groups of the aforedefined objects. A
Dendritic Arbour is a collection of branches having roots in the soma. Hencerforth
the collection of Dendritic Arbours, that is, the neuron without the soma, is simply
referred as the Periphery. These concepts are summarized in the Table. 1.

2.2 System overview

Briefly, the proposed approach for the parametric contour extraction of branching
structures involves the following three steps:

• Input Preprocessing Algorithm. In summary, this algorithm is aimed at prepro-
cessing the input 2D image, unfolding it into additional images containing its
required structural building blocks for the subsequent steps. The input image is
preprocessed by means of mathematical morphology operations [10, 24], yield-
ing its separate components, namely:
· periphery skeleton image, henceforth referred to as skeleton
· critical regions image
· terminations image
· soma image
· queue of primary seeds
• Branch Tracking Algorithm. The BTA has two main goals: to label each branch

and to classify each critical region. It is applied for every primary seed present in
the queue. The labelling procedure starts at the segment adjacent to the primary
seed. After reaching a critical region, the current segment will have been entirely
labeled, so a decision concerning the next segment to continue with the tracking
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(a) (b) (c)

(d) (e) (f)

Fig. 4. The critical regions classification rules take into account the angle β between the
inwards direction vector - v̂0 - and the outwards direction vector - v̂2, the angle γ between
any pair of outwards direction vectors and the cardinality |E1| of the set of outwards di-
rection vectors E1 related to the current critical region s1. (a) If a critical region presents
|E1| = 2 and β < 90◦ it is immediately classified as a bifurcation 1; (b) if β ≥ 90◦ it
may be a bifurcation 2 or (c) even a bifurcation 3 as long as there is another critical region
nearby. (d) A bifurcation 4 presents |E1| = 3, but there is no γ ≈ 180◦. (e) A superposition
appears with |E1| = 2 and another critical region s2 nearby, with γ ≈ 180◦. (f) Finaly, a
crossing has E1 = 3 and γ ≈ 180◦. Notice that bifurcation 1 could be mistaken for either
bifurcation 4 or superposition and bifurcation 2 could be mistaken for bifurcation 3 in case
the adopted rules had not been considered.

must be taken. In addition to finding the optimal segment to move ahead, the
algorithm also identifies the current critical region as either a bifurcation, a su-
perposition or a crossing. If the current critical region is a bifurcation, the BTA
stores the related secondary seed in an auxiliary queue, otherwise the BTA stores
the addresses of the current segment end point and the next segment starting
point. By doing so, the BTA labels all the segments comprising each dendritic
branch in a recursive-like fashion, until reaching a termination.
• Branching Structure Contour Extraction Algorithm. The BSCEA main role is to

extract the parametric contour c(t) = (x(t), y(t)) along the segments comprising
a 2D neuron image by using the labeled branches and classified critical regions
obtained in the previous step. Basically, the BSCEA follows the segments defin-
ing branching structures (resulting from the union between the labeled skeleton
and the soma) by entering all the shape innermost regions. During the contouring
process, whenever a branching region is found, the BSCEA contours the shape
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outwards, as the traditional algorithm would. On the other hand, whenever a
crossing or a superposition is found, the BSCEA contours the shape inwards, by
traversing the current critical region through the addresses stored in pointers by
the BTA. Finally the BTA gives as a result the contour parametric functions x(t)
and y(t) as well as a contour image (Fig.16(b)).

These procedures are detailed in Sections 3.1, 3.2 and 3.3, respectively.

3 General Framework

(a) (b)

Fig. 5. (a) Hit-or-Miss template used to filter the pruned skeleton, resulting in an
8-connected skeleton with one-pixel wide branches. (b) The light shaded pixels at the left–
hand side must be removed yielding the essential structure at the right-hand side.

3.1 Preprocessing

Some important shape parts are detected by taking into account specific features,
such as the number of each pixel’s neighbors and the size of the shape. For example,
pixels of branches are expected to have only 2 neighbors each, while critical regions
and the soma have more. Moreover, the soma area is greater than the areas of the
critical regions.

Initially, a preprocessing pipeline involving mathematical morphology transforma-
tions 2 is carried out on the input image, so as to obtain the separate components
of the neuron image, that is the skeleton comprised of 8-connected one-pixel-wide
branches, the critical regions, the terminations, the soma and the queue of primary
seeds. The referred separate components on different images are obtained as de-
scribed in the flowchart diagram depicted in the Fig. 6.

All the used structuring elements are flat and centered at their origins, i.e. their
centroids.

In order to isolate the soma, the image is eroded by a disk with radius 3, followed
by a dilation with a disk with radius 1. It is known that soma shapes do not follow

2 The reader is referred to [10,24] for details on the mathematical morphology operations.
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a clear pattern, making their segmentation critical. Herein, the soma segmentation
is attained through erosion, noise filtering by area opening, followed by a dila-
tion. Casual noisy pixels surrounding the soma image are wiped out through the
skeleton area opening. Then, additional processing is applied in order to obtain an
8-connected skeleton with one-pixel wide branches [16](??).

Fig. 6. Flowchart of the preprocessing pipeline. The red polygons represent the outcomes.

The most critical and perhaps difficult template to define would be that portrayed in
Fig. 5 for the Hit-or-Miss operation. The Hit-or-Miss is a mathematical morphology
operation [10], being a sort of loose template matching, because the template itself
is an interval, instead of a specific shape. Whenever certain small structure present
on the image fits inside this interval, it is marked. Herein, the Hit-or-Miss operation
is applied using the template depicted in Fig. 5(a) to detect redundant skeleton
pixels which should be ruled out, as shown in Fig. 5(b).

3.2 Tracking of Branches

One of the main goals at this stage is to label each dendritic branch as a whole
object on its own. This is achieved by pixel-by-pixel labeling of each branch. Con-
sidering the sequential nature of such a processing, this problem may be described
as estimating the spatial coordinates (x, y) of each subsequent branch pixel. Be-
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(a) (b)

(c) (d)

Fig. 7. Preprocessing results: (a) The darkest pixels were removed by the Hit-or-Miss filter-
ing yielding the 8-connected skeleton with one-pixel wide branches shown in lighter cyan;
(b) Pruned 8-connected skeleton (cyan) with one-pixel wide branches superimposed to the
skeleton (black); (c) Soma (red), seeds (blue), critical regions (green) and skeleton(black);
(d) Critical Regions (green and red) and skeleton (black).

cause this is analogous to tracking problems [1] in the computer vision literature,
this algorithm is called Branches Tracking Algorithm (BTA).

Tracking is usually divided into Prediction, Measure and Update stages [1]. Dur-
ing the Prediction stage, the algorithm estimates the next state of the system. On
the Measure stage, the algorithm probes the system by looking for plausible states
nearby, in this case valid pixels, through some measures, herein the spatial coordi-
nates (x, y) of pixels. During the Update stage, the algorithm merges both pieces
of information gathered on the previous two stages, through a linear combination,
giving as a result the optimal estimation for the next state. So, in terms of Tracking,
the BTA Prediction and Measure stages are carried out in a single step, through the
8-neighborhood scanning by using the chain-code [8].

The BTA Update stage is related to the pixel labeling. This stage labels each den-
dritic subtree growing out of the soma in the same way, i.e. by starting from the
related primary seed and labeling the entire branch adjacent to it, up to its termina-
tion. Meanwhile, its branches are marked to be labeled afterwards. Thereafter, every
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branch is labeled as the first branch was, and the respective encountered branches
are similarly marked to be labeled afterwards in a recursive-like fashion until the
whole dendritic subtree is labeled.

The BTA is mainly composed of two nested loops. The outermost loop is on primary
seeds, being related to the labeling of each dendrite having root in the soma. The
innermost loop is on secondary seeds, being related to the labeling of each branch
within a given dendrite. This algorithm is depicted in the flowchart of Fig. 8. It is
worth mentioning that, for our purposes, valid pixels are defined as simultaneously
non-labeled and non-critical foreground pixels. Then, for each primary seed, the
BTA starts by subsequently stacking every valid pixel from a segment to be labeled
afterwards, until either a termination or a critical region is reached.

On arriving at a critical region, the BTA may perform one or two of the following
tasks, Continuity of the Tangent Orientation Assessment and Critical Regions Clas-
sification. The former (detailed in the Section 3.2.1) is always carried out, while
the latter (described in the Section 3.2.2) is performed only if the current critical
region has not been classified yet. Notice that though the critical regions are now
available from the previous preprocessing step, they are not classified yet, i.e. we do
not know which is a bifurcation, a crossing or a superposition. This classification is
important for the contour extraction step.

3.2.1 Continuity of the Tangent Orientation Assessment

Analogously to the tracking process during branches labeling as described in 3.2,
this step also comprises Prediction, Measure and Update, however in a slightly dif-
ferent fashion. Coming to a critical region in this step is similar to approaching the
occlusion case in tracking problems [11], where different objects follow trajecto-
ries which apparently overlap.

So, after arriving at a critical region, the Prediction stage is performed by computing
the inwards direction vector v̂0. In the Measure stage the algorithm calculates all
outwards direction vectors v̂i. Finally, in the Update stage the outcomes from the
Prediction and Measure stages are merged. The reason to do that is to estimate
the best candidate segment among all the alternatives so as to carry forward the
tracking procedure. This merging is achieved by the calculation of inner products
(projections) between the inwards direction vector v̂0 and each outwards direction
vector v̂i (observe that these two vectors have unitary magnitude), according to Eq.
1:

k = arg max
i

(< v̂0, v̂i >) (1)

where the index k is assigned to the direction vector v̂k among v̂i, for which the
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Fig. 8. Flowchart of BTA.
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inner product result is the largest. The extremity points for properly computing
each vector are determined through a Breadth-First Search approach 3 .

Every time a critical region is encountered, the Breadth-First Search is triggered
and all the forward neighboring pixels are iteratively enqueued into an auxiliary
queue, while passing across the just detected critical region. At each Breadth-First
Search iteration, the auxiliary queue is run through in search of critical pixels. The
stop condition for the Breadth-First Search is set beforehand as a number C of con-
secutive executions through the auxiliary queue without finding any critical pixel.
This procedure is detailed in an example in Appendix A.1.

The starting pixel of the optimum segment to proceed is lastly stacked and labeled.
Also, the alternative path origin is considered as a secondary seed, that is a side
branch seed to be enqueued in case a bifurcation is detected. Conversely, in case
either a superposition or a crossing is detected, the next segment starting point
Vn+1 and the current segment last point Vn (Fig. 13(b)) addresses are stored into
the Pointers Map.

3.2.2 Critical Regions Classification

While assessing the orientation of the tangent direction vectors at each critical re-
gion, as described in section 3.2.1, the BTA also gathers enough information to clas-
sify the current critical region into one of the 6 different classes (see Fig. 4), which
have been identified as being critical for the skeletons. Critical Regions Classifi-
cation is a crucial concept for the proper functioning of our Contour Extraction
algorithm presented in section 3.3. Although Critical Regions Classification is not
an algorithm on its own, it is an important part of the BTA. Therefore, each critical
region is classified according to some special rules. The decision tree depicted in
Fig. 9 details both the classification rules themselves and the order in which they
should be considered, i.e. it illustrates the flow of decisions required to properly
classify a critical region into one of the 6 classes showed in Fig 4. These classes
have been abstracted from the analysis of several images, during the development
of our methodology. We started from the assumption that 2D branching structures
are comprised of only bifurcations 1 and crossings. So the number of adjacent seg-
ments (3 or 4) at every critical region should be enough to classify them. How-
ever, misclassifications during the system development implied a more complete
description. The system became more and more robust, as we moved further by
taking into account new pieces of information, such as orientation between incom-
ing and outgoing direction vectors, proximity relation between neighbor crossing
regions, besides the basic and first criterion of number of adjacent segments to each
crossing region.

3 The Breadth-First Search is a suitable method to find the shortest path between two nodes
in a graph, implemented by using a queue of nodes as a data structure [23].
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In brief, the critical regions classification rules take into account the angle β be-
tween the inwards direction vector - v̂0 - at the current critical region s1 and its
outwards direction vector - v̂2; the angle γ between any pair of outwards direction
vectors v̂i, v̂j; and the cardinality |E1| of the set of outwards direction vectors E1

related to the current critical region s1.

Fig. 9. Decision tree representing the sequence of rules applied for Critical Regions Clas-
sification by the BTA. The variables s1 and s2 represent respectively the current critical
region and other nearby in the set S of critical regions (see Fig. 4). The variables E1 and
E2 stand for the sets of unitary outwards vectors related to s1 and s2 respectively. Since a
critical region is individually classified as it is found during the labeling process, it is clear
that the current critical region s1 exists. The variable β measures the angle between the in-
wards direction vector and the outwards direction vector, while the variable γ measures the
angle between any two outwards direction vectors. Refer to the Appendix A.2 for further
explanation on notations.
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Fig. 10. Flowchart of the BSCEA.
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3.3 Contour Extraction

Consider the following conventions for the Branching Structures Contour Extrac-
tion Algorithm (BSCEA) description:

i input: union of labeled skeleton and soma images.
ii directions related to the current C pixel are identified according to the chain-

code.
iii the input is followed in a counter-clockwise sense.
iv all theN points of the parametric contour are stored in a suitable data structure
E(1..N). Each element E(n) keeps the nth contour point coordinates, i.e.
E(n).x and E(n).y, which are the computational representation for x(t = n)
and y(t = n) respectively. When the contour is closed, x(t = 1) = x(t = N)
and y(t = 1) = y(t = N).

The main steps composing the BSCEA are depicted on the respective flowchart in
Fig. 10. The contour following algorithm explained in [8] has been adopted in this
work.

3.3.1 Finding the first pixel

The BSCEA starts by a raster scanning, i.e., from left to the right, from top to
the bottom, in search of the first contour pixel E(1), which should be the first
background pixel found that is also a neighbor of a foreground pixel. In the sequel,
the BSCEA will contour the shape all the way, until coming back to the first pixel,
closing the cycle and having E(1) = E(N).

3.3.2 Finding the next pixel

From the second pixel on, the chain-code will be used to scan the current pixel
vicinity. In so doing, the second contour pixel will be the first neighbor in the
chain-code sequence 4, 5, 6, 7, 8, which is also a background pixel and a neigh-
bor of a foreground pixel. Herein this scanning in search of the next pixel is done
analogously to that by the traditional contour extraction algorithm [8]. Besides di-
rection relationship between current and previous pixels (see Fig.11) to properly
decide about the next contour pixel, it shall be considered the transition between
labels, so as to know if the BSCEA is contouring a branch, the soma or a critical
region. The BSCEA contouring strategy is in accordance with the specific structure
being contoured. So, the main BSCEA parameters are:

• the current contour pixel E(n)
• the direction dcp from the current to the previous pixel
• the previous pixel label
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• the current pixel label

Providing the BSCEA with the E(n) pixel and direction dcp allows the identifica-
tion of the starting point to scan the neighborhood in search of the next pixel [8],
according to the chain-code sequence.

Since the input for the BSCEA is a union of the labeled skeleton and the soma im-
ages, it is necessary to adopt a policy to properly find the next pixel in each case.
Hence, the BSCEA considers contouring branches as the default case, taking the
first background pixel which is also neighbor of a foreground pixel in the neighbor-
hood defined by the chain-code. Conversely, the BSCEA considers contouring the
soma as a particular case, taking the last pixel, instead of the first one, to be included
as contour. By so doing, the BSCEA is able to contour branches, while preserving
the ability of more traditional approaches to circumvent the problem of contour-
ing occasional one-pixel wide entrances into the soma, consequently allowing the
contour to be closed [8].

Fig. 11. Previous (p), Current (c) and Next (n) pixels represented in an iteration of the
BSCEA. The direction relationship dpc between the pixels p and c, besides the labels as-
signed to the segments, determine the Next pixel n.

3.3.3 Traversing critical regions

It is also necessary to devise a strategy for critical regions processing, according to
their classes, as described in section 3.2.2. Regions classified as Bifurcation should
be contoured outwards, while those ones classified as either Superposition or Cross-
ing should be contoured inwards, through pointer addresses written to the Pointers
Map data structure during the tracking stage. The integration between soma and
labeled skeleton is critical for the successful contour extraction, since it guarantees
the contour closing.

20



The BSCEA can deal with both cases by taking into account the labels of previous
and current pixels, which convey valuable information concerning particular situa-
tions, i.e. if the critical region is a bifurcation, ”contour it outwards” (see Fig. 10 and
Fig.12), as well as the traditional contour extraction algorithm would [8]. In case
it is a superposition or a crossing, ”contour it inwards”, (see Fig. 10 and Fig. 13),
which means to trace a line between the current segment end point and the next
segment starting point. Both points are known from the pointers marked by the
BTA. The line is traced by using the Bresenham algorithm [2] for tracing a digital
straight line segment.

• case 1: BSCEA is contouring some branch
· take the 1st candidate in the chain-code sequence.
• case 2: BSCEA is at a transition between a branch and the soma
· take the last candidate in the chain-code sequence.
• case 3: BSCEA is at a transition between a branch and a critical region
(a) if the critical region is a bifurcation, ”contour it outwards” (see Fig. 10 and

Fig.12).
(b) if the critical region is either a superposition or a crossing, ”contour it inwards”,

(see Fig. 10 and Fig. 13).

In the case 3-a, ”contour outwards” means contouring the shape as the traditional
contour extraction algorithm would [8], as shown in Fig.12.

In the case 3-b, ”contour inwards” means:

• probing the current pixel E(n) vicinity in search of the respective pointer Pn in
the Pointers Map data structure
• determining the direction relashionship dE(n)⇐⇒Vn betweenE(n) and the current

segment end point pixel Vn

• accessing the next segment starting pixel Vn+1, pointed to by Pn

• assuming dE(n+1)⇐⇒Vn+1 = dE(n)⇐⇒Vn and finding En+1 accordingly
• filling the blank in the contour over the critical region with a digital line between
E(n) and E(n+ 1), by using the Bresenham’s algorithm [2].

Notice that the BSCEA cannot tell which pixels of a superposition or crossing are
related one another or to a branch, since the projection from the 3D neuron onto the
2D plane suppresses this information. Such a problem is circumvented by replacing
the shared pixels in the critical region by two short intercepting segments given by
the Bresenham’s algorithm, as illustrated in Fig.13.
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(a) (b)

Fig. 12. Contouring a bifurcation. Branches appear labeled in blue and green, while the
critical region previously classified as a bifurcation appears in magenta. The contour is
shown in brown. (a) By detecting labels transition, the BSCEA identifies that it has arrived
at a bifurcation, thus deciding to contour the shape outwards. (b) Having left the critical
region behind, it proceeds until reaching another critical region.

4 Results

All the methods described in this work have been implemented as Matlab® scripts,
using the SDC Morphology Toolbox for MatLab™ [13]. The overall method has
been evaluated with respect to a data set containing several images of ganglion
cells in the retina of cats, acquired by camera lucida. In order to reflect an important
biological investigation, we have chosen 2D neuron images from [18].

Results obtained for three images were chosen to be presented in this work. Fig-
ure 14 shows labeled neuronal images (right column) obtained from alpha, delta
and epsilon (left column) types of neurons. New labels were assigned to dendrite
segments originating from branches. The algorithm is able to distinguish between
critical region classes, reflected by the correct assigned labels for the outwards seg-
ments from such structures. Notice how the cases of close parallelism imply the
BTA to label the clumped segments as superposition regions. Moreover, long over-
laps are also labeled as superposition regions, as long as such an overlap is smaller
thanDmax, which is the minimum path length allowed between two critical regions.
Extremely close bifurcations of type 1 can be labeled as a bifurcation of type 4. All
the bifurcations, superpositions and crossings have been correctly labeled.

Results for the Branching Structures Contour Extraction Algorithm are presented in
Figure 16, where one can see the parametric contour trace for the shape and a com-
parison between the results obtained by using both the traditional and the BSCEA
approaches. Observe from Figures 16(a), 16(c) and 16(e) how the traditional al-
gorithm did not afford access to the innermost neuron contour portions, while the
BSCEA conversely ensured full access to all neuronal processes, as shown in Fig-
ures 16(b), 16(d) and 16(f).

22



(a) (b)

(c) (d)

Fig. 13. Contouring an overlap. Branches appear labeled in blue and green, while the critical
region previously classified as a superposition appears in red. The contour is shown in
brown. (a) By detecting labels transition, the BSCEA identifies that it has arrived at an
overlap, thus deciding to contour the shape inwards. (b) Firstly the BSCEA looks in the
vicinity for the pointer Pn, related to the current segment end point pixel Vn. The pointer
Pn stores the address of the next segment pixel beyond the critical region, namely Vn+1.
Subsequently the algorithm determines the direction relationship dE(n)⇐⇒Vn

. Assuming
dE(n+1)⇐⇒Vn+1

= dE(n)⇐⇒Vn
, it finds the next segment starting pixel E(n + 1). (c) The

Bresenham’s algorithm is applied to trace a digital line between E(n) and E(n+ 1), filling
the blank in the parametric contour signal over the critical region. (d) Having left the critical
region behind, it proceeds until reaching another critical region.

Additional experiments have been carried out in order to validate the algorithms
and to assess their performance with respect to noisy neuronal images. A valida-
tion test was performed with a synthetic neuron image, by labeling it manually and
automatically through the BTA (Fig. 18). Despite differences between manual and
automatic labelings, due to distinct assessments of tangent continuity for some bi-
furcations in both approaches, notice that both labelings are consistent, providing
suitable input for the BSCEA which yielded identical parametric contours for both
labelings. The robustness of the proposed methodology for noisy versions of the
same synthetic neuron image has been tested by convolving the original synthetic
image with six different 2D Gaussians, using bandwidths parametrized by values
of standard deviations spanning from 10−8 up to 2 · 10−6 in the Fourier domain.
Figure 19 shows results for extreme cases, namely the original synthetic image and

23



(a) (b)

(c) (d)

(e) (f)

Fig. 14. Results obtained by the Branches Tracking Algorithm when applied to alpha, delta
and epsilon neuron images. (a) Alpha (c) Delta and (e) Epsilon neuron images and respec-
tive labeled images in (b), (d) and (f). Distinct branches appear in different colours.

the smoothest version of it. Notice that the BTA provided consistent labelings for
the original and the smoothed versions, and the BSCEA yielded identical parametric
contours for both cases.

24



5 Concluding Remarks

The proper shape characterization of branching structures is a particularly impor-
tant problem, as it plays a central role in several areas of medicine and biology,
especially in neuroscience. Indeed, the current understanding of the physiological
dynamics in biological neuronal networks can be reinforced through the proper
characterization of neuronal cells shapes, since both the amount of synapes and the
way in which neurons organize in networks are strongly related to the cells shapes.

Local information is retrieved through parametric contour analysis, while global
information can be acquired from statistical measures considering the shape of the
whole cells. However, accurate contour following in neuronal shapes has not been
possible so far because of the presence of overlappings among neuronal processes
implied by the projection from 3D neuronal shapes onto 2D images. Whenever a
crossing takes place in these images, the traditional contour following algorithm,
which is based on the chain-code, fails to enter their innermost regions. The present
work described an original methodology capable of properly tackling the problem
of following the contour of branching structures, even in the presence of intercept-
ing branches. The main original contributions of our method 4 include both the
tracking of the branching structures, such as neurons, as well as the extraction of
the respective parametric contours. In addition, the features adopted in this work
to classify critical regions – such as shape, number of adjacent segments and an-
gles among segments, have intrinsic potential for providing additional information
to be used in neuronal characterization and classification. Our system is basicaly
comprised of three parts, i.e.: (i) Preprocessing Algorithm, (ii) Branches Tracking
Algorithm - BTA and (iii) Branching Structures Contour Extraction Algorithm -
BSCEA.

Because the proposed system begins with a series of transformations (preprocess-
ing) on the 2D projection of a 3D branching structure image, so as to obtain a
suitable skeleton, obviously any skeletonization scheme other than the morpholog-
ical thinning might be adopted, such as exact dilations [8], medial axis transform,
and so on, provided that an 8-connected skeleton with one-pixel wide branches is
obtained as a result. Besides, the skeletonization scheme will affect the choice of
all the preprocessing parameters, which in this work have been picked out by trial
and error. One should bear in mind that the method gist is supplying the tracking
algorithms with an adequate skeleton as input.

Apart from the skeleton, there are a number of separate components obtained through
the preprocessing step. Although the data structure to store such separate compo-
nents is immaterial to the preprocessing pipeline implementation, since it may be
implemented in alternative ways, we particularly have them separated and stored

4 Preliminary results of the proposed approach have been described in conferences ( [15,
17]).
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into separate images, for the sake of easier implementation. As will be shown in
the sequel, the system dynamics involves comparisons among such pieces of infor-
mation, which may be properly achieved by means of set operations (union, inter-
section, set difference, etc). Considering that mathematical morphology operations
are usually described in terms of set operations (union, intersection, etc.) and that
the SDC Morphology Toolbox for MatLab™ [13] implements such operations, we
decided to take advantage of it by separating those structures into different images.
However, instead of separating structures in images, one could label a pixel pertain-
ing to a structure, by using the Object-Oriented Programming Paradigm to keep
such information in the respective pixel attribute. Moreover, it should be empha-
sized that the one-pixel-wide restriction on the branches of the skeleton is manda-
tory in order to guarantee the proper operation of the tracking algorithm. In general,
the dendritic tree should be one-pixel wide, because the tracking procedure is based
on the stacking of nearby valid (background, unlabeled) pixels, following the chain
code order. Hence, the thicker the structure, the larger the number of pixels in the
vicinity of the current pixel. These irrelevant pixels would be indistinctly staked,
putting the BTA in a forward-backward visitation of pixels, and not in a sequence.
One should bear in mind that a one-pixel wide skeleton gathers enough information
concerning the essential structure of the shape [8].

Notice that the structuring elements dimensions have been obtained in an empirical
basis, specially for the images used in this work. Three images have been used to
calibrate these parameters: an alpha neuron image of size 500×598, a delta neuron
image of size 475×511 and an epsilon neuron image of size 768×712. It should be
emphasized that images with very different sizes may require different structuring
elements. Considering that Mathematical Morphology Image Processing depends
on the structuring element sizes and shapes, choosing a suitable structuring element
is important. Therefore, for different sized images from the mentioned above, one
will have to test disks with different diameters, following the sequence of operations
described.

The algorithms robustness regarding the contrast in input images is not affected,
since the preprocessing first step is to binarize the input image. Also, for the pur-
poses of this methodology, noise is related to redundant pixels, such as those wiped
out through the hit-or-miss filtering operation.

As for the BTA, there may be particular cases for further consideration yet, for ex-
ample images with high density values of critical regions and/or the presence of
structures whose topologies might favour the appearance of superpositions. The
first case, i.e. high critical regions densities may be due to particular shape topolo-
gies in the image or due to the image resolution itself, causing the BTA to cluster
critical regions ocurring very close to one another. Notice that, in an effort to fulfil
the previously set stop condition for the Breadth-First Search, the BTA has bunched
both bifurcations of type 1 (Fig. A.3-(a)) into a cluster of bifurcations appearing
as a bifurcation of type 4 (Fig. A.3-(b)). A possible solution is to use breadth-first
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search implemented with a tree data structure, in addition to the auxiliary queue, in
order to properly maintain memory of valid paths between direction vector termi-
nations and origins. Immediately after achieving the stop condition, the BTA would
retrieve the direction vectors end points hosted at the tree leaves. The respective
direction vectors origins would simply be obtained by climbing the tree from the
leaves upwards, until reaching the respectives first non-critical pixels adjacent to
the precedent critical region. Moreover, this strategy might allow disambiguating
between two possible origins that are equally far apart from a very same direction
vector termination, since the shortest distance between a direction vector termina-
tion and an origin candidate is the only condition taken for granted. The auxiliary
tree data structure would add a piece of information regarding the existence of a
valid path (segment) between a direction vector termination and an origin candi-
date.

In the second case, that is Superpositions, one should notice that such regions may
be resultant from three distinct problems. Firstly the hugely close parallelism, in
which images containing many branches almost parallel and very close to each
other usually come to present short cycles after the preprocessing stage. Short cy-
cles are highly undesirable, since they are error-prone structures. This problem may
be circumnvented by including a dilation step in the preprocessing pipeline, just
before the skeletonization. In so doing, short cycles are shrinked into closed Su-
perposition regions. Secondly, poor resolution may yield images having ellipsoid
cigarshaped crossings sampled as almost line-shaped structures. After the prepro-
cessing, these structures will apear as Superposition regions. Lastly, long overlaps
will also be labeled as superposition regions, provided that such overlapping is
below the threshold Dmax, that is the shortest allowed path length between two
bifurcations.

Needless to say that the system performance should not be evaluated on the basis
of the number of images, but rather on the number of fully accomplished tasks.
Regarding the number of successful objects processed, the number of trespassed
critical regions, during the contour following process, is a quantitative assessment
per se. Notice that the parametric contour following process is a sequential proce-
dure, in which any mistake will prevent the algorithms to continue and reach their
goal. In the case of BTA, the task is to label every branch. In the case of BSCEA,
the task is to obtain the parametric closed contour, coming back to the first pixel
it started from. Having this in mind, BTA succeeds only and if only if it does not
leave any branch out without being labeled. So the more labeled branches within a
neuron, the more evident the BTA success. As for the BSCEA, it succeeds only and
if only if it could return to the first pixel it started from, after having the whole pat-
tern contoured. So, the more critical regions within a 2D neuron image, the more
evident the BSCEA success. Also, concerning the quantitative validation between
results obtained from the traditional and the BSCEA approaches, Fig. 17 displays
the parametric signals (x(t) and y(t)) for both cases. Several global features may
be calculated from these signals, such as the bending energy.
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The most expensive operation in the BTA would be to check every pixel at some
8-neighborhood to decide whether or not it should be labeled. However this is done
at most a constant number of times. So, tracking would be eventually of O(n) with
respect to the number of object pixels (far less than the size of the image). Similarly,
in BSCEA, every pixel in the neighborhood of a labeled pixel is visited to check
whether it has a blank neighbor which will ultimately become a contour pixel, so it
would also be of O(n).

The main original contributions of the present work 5 encompass both the tracking
and the parametric contour extraction from branching structures, like neuron cells.
Future developments include the extension of the methodology to separate cells in
images containing multiple cells. Several applications of the methodology proposed
in this work can be made regarding neural networks images as well as other types
of biological structures such as retinal vessel trees.

5 Preliminary results of the proposed approach have been described in conferences ( [15,
17]).
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Table A.1
Breadth First Search across a bifurcation of type 1: auxiliary queue states. B is set to 1
whenever every pixel in a specific state is non-critical and 0 otherwise. Σ increases by
one if the respective B variable has been set to 1, and zeroed otherwise. Already dequeued
pixels have been concealed.

state current auxiliary queue B Σ

00 a b 0 0

01 b c d 0 0

02 c d e 0 0

03 d e f 1 1

04 e f g 1 2

05 f g h 1 3

06 g h i 1 4

07 h i j 1 5

A Appendices

A.1 Breadth-First Search Example

This process is illustrated in Fig. 1(a) which is related to Table A.1, Fig. 1(b) and
Table A.2. The former example illustrates the Breadth-First Search across a single
bifurcation, while the latter example illustrates the Breadth-First Search across two
very close bifurcations, giving rise to the agglutination effect of two bifurcations of
type 1 (Fig. 4(a)) into one bifurcation of type 4 (Fig. 4(d)). In both examples one
may realize that the state 0 has been obtained by probing the vicinity of the pixel a,
in the chain-code (Fig. A.2) sequence 3, 4, 5, 6, 7, 8. Having set the stop condition
parameter C to 5 for these examples, the Breadth-First Search continues until the
auxiliary queue achieves the state 07 in the first case, and state 19 in the second case,
when precisely Σ equals C, since the auxiliary queue has been continuously run
through for 5 times. The stop condition parameter C has been empirically defined
by taking into account a sufficient distance far away from the critical region to
compute the outwards direction vectors.

Thus, the leftover pixels in the auxiliary queue, say i and j in the first case, and u,
v and x in the second case, are precisely the end points of the required outwards
direction vectors ~vi, obviously non-normalized yet. Besides the end points, the ori-
gin points are also needed to compute each outward segment direction vector. In
order to find the origin points, every candidate should satisfy two requisites at the
same time: (i) being the closest neighbor to a critical region pixel and (ii) having
a path of valid pixels between it and the corresponding end point. For skeletons
with low densities of critical regions, one may relax these requirements to only
the first condition. However, in some cases the latter requisite is mandatory so as
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Table A.2
Breadth First Search across a bifurcation of type 4: auxiliary queue states. B is set to 1
whenever every pixel in a specific state is non-critical and 0 otherwise. Σ increases by
one if the respective B variable has been set to 1, and zeroed otherwise. Already dequeued
pixels have been concealed.

state current auxiliary queue B Σ

00 a b 0 0

01 b c d 0 0

02 c d e 0 0

03 d e f 1 1

04 e f g 1 2

05 f g h 1 3

06 g h i 1 4

07 h i j 0 0

08 i j k 0 0

09 j k l m 0 0

10 k l m n 0 0

11 l m n o p 0 0

12 m n o p 0 0

13 n o p q 0 0

14 o p q r 0 0

15 p q r s 1 1

16 q r s t 1 2

17 r s t u 1 3

18 s t u v 1 4

19 t u v x 1 5

to correctly find out each origin point direction vector, since it may happen that
there is a closest neighbor to a critical region which does not pertain to the current
branch. In the cases illustrated in Fig. 1(a) and Fig. 1(b), it is sufficient to take into
account only condition (i). Afterwards, each outwards direction vector is normal-
ized and inner products between the unitary inwards direction vector v̂0 and each
unitary outwards direction vector are computed. As a consequence, the unitary out-
wards direction vector for which the inner product attains its maximum result, in
accordance with Eq. 1, gives the optimum direction to continue the tracking with
the very same label value, hence providing the following pixel to be stacked. The
remaining vectors origins are enqueued as secondary seeds. Both examples show
non-normalized outward direction vectors , being ~v1 the optimum direction choice
to continue the tracking beyond the critical region, whereas the remaining vectors
~vi are shown as side branches directions to be considered later on.
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A.2 Critical Regions Classification Rules

Let S be a set of critical regions S = {s1, s2, s3...}, s1 being the current critical
region and Dmax the shortest allowed path length between two consecutive critical
regions. Let v̂0 be the unitary inwards vector to s1 and let E1 and E2 be the sets
of unitary outwards vectors from close critical regions s1 and s2 respectively. Let
|Ei| be the cardinality of Ei. Then, a critical region should be classified into one of
the eight classes depicted in the Fig. 9, according to the following rules:

(1) Bifurcation 1: Fig. 4(a)
|E1| = 2 and
< v̂0.v̂i >> 0, ∀v̂i ∈ E1

(2) Bifurcation 2: Fig. 4(b)
|E1| = 2 and
∃v̂i, v̂j ∈ E1 |
< v̂0.v̂i >> 0 and < v̂0.v̂j >≤ 0 and
@s2 | dist(s1, s2) < Dmax

(3) Bifurcation 3: Fig. 4(c)
|E1| = 2, but
∃s2|dist(s1, s2) < Dmax ∴ |E1|+ |E2| = 3
∃v̂j ∈ s1 e v̂k, v̂l ∈ s2, such that
< v̂0.v̂k >≈ 1 and < v̂j.v̂l >6= −1

(4) Bifurcation 4: Fig. 4(d)
|E1| = 2, but
∃s2|dist(s1, s2) < Dmax ∴ |E1|+ |E2| = 3
∃v̂j ∈ s1 e v̂k, v̂l ∈ s2, such that
< v̂0.v̂k >≈ 1 , < v̂j.v̂l >6= −1
and < v̂0.v̂j >≤ 0

(5) Superposition: Fig. 4(e)
|E1| = 2, but
∃s2|dist(s1, s2) < Dmax ∴ |E1|+ |E2| = 3
∃v̂j ∈ s1 and v̂k, v̂l ∈ s2, such that
< v̂0.v̂j >≤ 0, and
< v̂0.v̂k >≈ 1 and < v̂j.v̂l >≈ −1

(6) Crossing: Fig. 4(f)
|E1| = 3 and
∃v̂j, v̂k, v̂l ∈ s1 such that
< v̂0.v̂k >≈ 1 and < v̂j.v̂l >≈ −1
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Fig. 15. Parametric contour resulting from the BSCEA application on a neuron Alfa image.
Notice how the BSCEA grants full admittance to all the innermost regions within the neuron
image. Also, note the contour continuity across critical regions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 16. Comparison for alpha, delta and epsilon neuron images between results yielded by
the traditional (a-c-e) and (b-d-f) BSCEA algorithms. The BSCEA enters all the regions,
surpassing the traditional algorithm.
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(a) (b)

(c) (d)

Fig. 17. Comparison for an alpha neuron image between results yielded by the algorithms
(a-c) Traditional and (b-d) BSCEA. The BSCEA enters all the regions, surpassing the tra-
ditional algorithm in over than two thousand contour points.
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(a) (b)

(c) (d)

Fig. 18. Comparison between a synthetic neuron shape labeled automatically (a) and man-
ually (b). Parametric contours provided by the BSCEA for the automatic (c) and manual
(d) labelings. Despite minor differences between automatic and manual labelings, notice
that both contours are in complete accordance.
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(a) (b)

(c) (d)

(e) (f)

Fig. 19. Assessment of noise effects on neuron shape labeling and respective contour ex-
traction. A synthetic neuron shape has been corrupted by 2D Gaussians with different band-
widths. The Gaussian scale parameters σ in Fourier domain varied from 10−8 up to 2·10−6.
Both BTA and BSCEA ensured robustness within this range of smoothing bandwidths.
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(a) (b)

Fig. A.1. Breadth First Search application to find out extremity points for outwards direc-
tion vectors calculation. The X-marked pixel address is provided by the backpointer as the
origin of the inwards direction vector ~v0. Pixels appear in alphabetical order portraying the
Breadth First Search visitation order, according to the chain-code scanning. (a) A bifur-
cation 1 and its direction vectors. The Breadth-First Search starts up when the pixel b is
detected and ceases when there remain solely the pixels i and j in the auxiliary queue. (b)
A bifurcation 4 and its direction vectors. When two critical regions of type bifurcation 1
occur highly close to each other, the agglutination effect takes place and two bifurcations 1
are seen as a bifurcation 4. The Breadth-First Search starts up when the pixel b is detected
and ceases when there remain solely the pixels u, v and x in the auxiliary queue.

Fig. A.2. Neighborhood defined by the chain-code and used by the BTA and BSCEA
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(a) (b)

Fig. A.3. (a) Two distinct bifurcations of type 1 will be seen as (b) one bifurcation of type 4,
an immediate consequence from the agglutinating effect caused by the Breadth First Search
algorithm, when encountering two close bifurcations, as though the current local analysis
had given place to a more global analysis by switching into a larger analyzing scale
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