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Abstract—High-level understanding of image contents has been
receiving much attention in the last decade. Low level processing
figures as a building block in this framework and it also
continues to play an important role in several specific tasks
such as in image filtering and colorization, medical imaging, and
document image processing. The design of image operators for
these tasks is usually done manually by exploiting characteristics
specific to the domain of application. An alternative design
approach is to use machine learning techniques to estimate the
transformations. Given pairs of images consisting of a typical
input and respective desired output, the goal is to estimate an
operator that transforms the inputs into the desired outputs.
In this tutorial we present a rigorous mathematical formulation
to the framework of learning locally defined and translation
invariant transformations, practical procedures and strategies
to address typical machine learning related issues, application
examples, and current challenges. We also include information
about the code used to generate the application examples.

Keywords-Image Operator Learning; Machine Learning; Im-
age Processing

I. INTRODUCTION

Computer Vision research has witnessed huge advances
in the last decades. Its application scope has been largely
extended, with the type and contents of processed images
shifting from the ones obtained under strictly controlled con-
ditions to those freely obtained without or with little control
(for instance, images or videos obtained with mobile device
cameras), and from application specific images to natural scene
images. Nowadays there are complex vision systems that are
capable of recognizing specific objects such as faces [1], or a
few dozen of objects [2], in natural or uncontrolled images.
There are also initiatives that integrate vision systems into
autonomous cars [3], surveillance systems, and so on.

These modern applications require, in general, high level
understanding of image contents which includes tasks such as
object detection and recognition [4]. The most recent advances
in image processing methods rely on the use of a vast set of
image features combined with machine learning techniques.
We can cite SIFT [5] as a successful example of these methods.
SIFT combines a clever way of extracting image descriptors
that are invariant under many common deformations and
variations (illumination, scale, rotation) and algorithms for
matching the extracted descriptors. They can be used to detect
objects as well as to classify images. Another successful
example is the convolutional neural network [6], [7] which
has been already proven useful in many application problems

(http://deeplearning.net/demos/).
Despite the trend towards higher level processing, low level

processing still figures as an important task in many problems
that involve image analysis. Some examples where lower level
processing, including pixel level processing, are important
and required are in document image analysis, medical image
analysis, and segmentation of object contours for diverse
applications. Besides that, low level features are also used as
building blocks for higher level approaches [8], [4].

Low level processing relies on local features of the images
and thus local image operators are suitable for these tasks. For
instance, filtering was a trendy topic just a few decades ago
and many useful filters such as Wiener filter, median filter,
and morphological filters have been proposed. Morphological
operators, which have emerged around the same period, is
based on locally probing geometrical structures present in
images and constitute a powerful tool for image processing [9],
[10].

A large class of local image operators can be modeled
as morphological operators. These operators are formally
studied in the field of mathematical morphology, where images
are modeled as elements of a complete lattice (a partially
ordered set with the meet and join defined for each pair of
elements) [9], [11]. For example, binary images are modeled as
subsets of the image domain, and binary image operators as set
transformations. Even if we constrain the set of morphological
operators to those that are translation invariant and locally
defined with respect to a neighborhood window W , called
W -operators, we still have a very large set of operators.

Designing a solution based on these type of image operators
requires a considerable degree of knowledge and experience
from the users. An alternative way of designing them is by
using machine learning techniques. In order to be useful, such
approach should rely preferably only on high level input from
the users. In that sense, many previous approaches for local
image operator learning have proposed the use of input-output
pairs of images as the source of training data [12], [13], such
as the ones shown in Figure 1. This type of approach has
been successfully applied on filtering tasks in the decade of 80
and 90. Median and stack filter design and template matching
filters are examples of such applications [13], [12], [14].

In addition, several machine learning topics such as fea-
ture learning, dictionary learning [15], kernel methods [16],
classifier combination [17] have also emerged and established
themselves as important tools in machine learning applica-
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Figure 1: Input-output pair for the staff removal task.

tions. Many of these techniques have been motivated by image
processing and computer vision related applications.

The goal of this tutorial paper is to present a comprehensive
view on image operator learning and, in particular, of W -
operators. The content of the paper is organized as follows.
In Section II we present the fundamentals of image oper-
ators, some important properties and results regarding their
representation and local characterization. In Section III we
review the notion of optimal operators and describe their
estimation procedure from training images, inserting the image
operator design problem into the framework of machine learn-
ing. Specifically we show the connections between learning
image operators and classifier training. Then, in Section IV
we present some strategies used to address machine learning
related issues that pose challenges in the classifier design
process. These strategies explore two-level design approach,
operator space constraining, kernel approximations and other
ideas. In Section VI we show examples of successful applica-
tions. In Section VII we present some concluding remarks.

II. BASIC CONCEPTS ON IMAGE OPERATORS

We consider that digital images are defined on the discrete
grid1 E = Z2. Thus images are represented by functions of the
form f : E→ K, where K = {0, 1, . . . , k−1} denotes the set
of gray levels of the image. Typical 8-bit gray-scale images
use k = 256 and binary images use k = 2. The value of f at a
given point p ∈ E corresponds to the gray level of image f at
that point. The set of all images defined on E with gray-levels
in K is denoted as KE, i.e., KE = {f | f : E→ K}.

An image operator is any mapping of the form Ψ : KE →
KE. Given an image f , [Ψ(f)](p) denotes the gray level of the
transformed image Ψ(f) at point p. Note that an operator may
be such that its input is a gray-scale image and its output is a
binary image. Since {0, 1} ⊂ {0, 1, . . . , 255}, for convenience
we use gray level set K both for the input and output images,
unless an explicit distinction is required.

1In practice, images have a finite support (usually a rectangular region).
However, from a theoretical point of view it is convenient to deal with domains
closed under translation. Thus to avoid the additional definitions needed to
add such property to a finite domain, in this section we consider E = Z2.

A. Translation invariance and local definition

Two important properties of image operators are translation
invariance and local definition. First let us define the transla-
tion of an image. Given an image f : E → K, its translation
by q ∈ E is denoted fq and defined for every p ∈ E as
fq(p) = f(p−q), where the symbol − denotes the usual vector
subtraction operation. An operator Ψ is said to be translation-
invariant if [Ψ(f)]q = Ψ(fq).

Local definition refers to the property that states that the
value of the transformed image Ψ(f) at any point p depends
only on the image values on a limited neighborhood of p.
Formally, an operator is a window operator if there exists a
finite set W ⊆ E such that [Ψ(f)](p) = [Ψ(f |W ′p)](p) for
every p ∈ E, f ∈ KE, and W ′ ⊇ W [9]. Here f |W ′p is an
image with support W ′p, with the same value of f on each
point within W ′p and with value 0 on each point out of W ′p.

Operators that are translation-invariant and locally defined
are known as W -operators. An important consequence of these
two properties is the characterization of these operators by a
local function [9]. Any W -operator Ψ can be characterized,
for any point p, by a local function ψ : KW → K as follows:

[Ψ(f)](p) = ψ(f−p|W ) . (1)

The above equation means that the output value of the trans-
formed image Ψ(f) of an input image f , at point p, can
be computed by a local function ψ applied on the subimage
f−p|W , which is f |Wp

(the image f restricted to Wp) shifted
by −p (thus f−p|W is an image defined on W ). We consider
that W is defined around the origin o. Figure 2 shows a 3× 3
window (with its center at the origin) and its translation Wp.

W

Wp

Figure 2: A window W , its translation Wp, and f |Wp
.

Operators as the ones defined above are extensively stud-
ied in the field of Mathematical Morphology, within the
framework of lattice theory [9], [18]. Images are modeled as
elements of an algebraic structure known as lattice (partially
ordered sets with the join and meet operations defined for
each pair of elements). The set of image operators is itself a
lattice and thus algebraic properties of these operators are also
studied with the help of lattice-theoretical concepts.

An important theoretical result regarding translation-
invariant lattice operators is their canonical representation,



uniquely characterized by a set known as kernel, as a supre-
mum of elementary operators [19]. The representation for the
class of binary image operators is detailed next.

B. Binary operators

A binary image f : E → {0, 1} can be equivalently repre-
sented as a subset Sf ⊆ E through the bijection p ∈ Sf ⇐⇒
f(p) = 1. Thus, the set of all possible binary images can be
represented by the power set of E, P(E) = {S |S ⊆ E}.

In the following, we detail the representation theorem for
translation invariant binary image operators. Let us introduce
some additional notations and definitions. The translation of a
set S (corresponding here to an image translation) by a vector
q is denoted Sq and defined as Sq = {p + q | p ∈ S}. Its
transpose is defined as Š = {−p | p ∈ S} and its complement
as Sc = {p | p /∈ S}. The set [A,B] = {S ∈ P(E) |A ⊆ S ⊆
B} is called an interval with extremities A and B and it can
be understood as a set of images.

Two elementary operators, characterized by a structuring
element B ⊆ E and defined based on set operations, are:
• Erosion: εB(S) = {p ∈ E |Bp ⊆ S}
• Dilation: δB(S) = {p ∈ E | B̌p ∩ S 6= ∅}

A basic operator, called sup-generating [20], defined as
Λ(A,B)(S) = {p ∈ E |Ap ⊆ S ⊆ Bp} can be decomposed in
terms of these elementary operators:

Λ(A,B)(S) = {p ∈ E |Ap ⊆ S ⊆ Bp}
= {p ∈ E |Ap ⊆ S} ∩ {p ∈ E |S ⊆ Bp}
= εA(S) ∩ {p ∈ E | (Bp)c ⊆ Sc}
= εA(S) ∩ εBc(Sc) . (2)

Sup-generating operators are also known as wedge opera-
tors [9] and are closely related to the hit-or-miss operators [11].

The canonical representation theorem for translation-
invariant set operators was first presented in [20]. It extended
the decomposition results previously presented by G. Math-
eron [21] for the class of increasing operators (that is, the
operators that preserve the partial order relation of the lattice).
The decomposition structure of a set operator Ψ relies on the
kernel of the operator, which is defined as

K(Ψ) = {S ∈ P(E) | o ∈ Ψ(S)} (3)

where o denotes the origin of E.
Note that the kernel of the sup-generating operator param-

eterized by an interval [A,B] is the interval [A,B] itself, that
is,

K(Λ(A,B)) = {S | o ∈ Λ(A,B)(S)}
= {S | o ∈ {Ap ⊆ S ⊆ Bp}}
= {S |Ao ⊆ S ⊆ Bo}
= {S |A ⊆ S ⊆ B} = [A,B] . (4)

Thus, they are also called as interval operators.
Having the above definitions, we are ready to state the

representation theorem.

Theorem (Sup-representation): Let Ψ : P(E) → P(E) be a
translation-invariant set operator and let K(Ψ) be its kernel.
Then, the following result holds.

Ψ(S) =
⋃
{Λ(A,B)(S) : [A,B] ⊆ K(Ψ)} . (5)

A proof can be found in [9]. Since operators are uniquely
characterized by kernels, we have a canonical representation
of the operators as a union of a set of interval operators.
The above decomposition has redundant terms (for instance,
[A1, B1] ⊆ [A2, B2] implies Λ(A1,B1)(S) ⊆ Λ(A2,B2)(S)).
Removing the redundant term leads to an equivalent canonical
minimal representation. The reader may refer to [20] for more
details.

Some algebraic properties of image operators define specific
subclasses of operators. Among them, we cite increasingness
(those that preserve the order relation, i.e., those such that
S1 ⊆ S2 =⇒ Ψ(S1) ⊆ Ψ(S2)), and anti-extensiveness (those
such that Ψ(S) ⊆ S).

If Ψ is a W -operator, then the kernel elements can be
constrained to subsets of W and the interval operators can
be seen as detectors of a collection of templates contained
in W [20], [9]. By assigning a binary logical variable to each
point in W , the local function of Ψ can be understood as a
logical function. In the following we present a few examples
to illustrate these concepts.

C. Examples

1) Erosion and dilation: Let B = {(−1, 0), (0, 0), (1, 0)}
be a structuring element, centered at the origin o = (0, 0).
According to the definition, p ∈ εB(S) ⇐⇒ Bp ⊆ S. Thus,
εB is a W -operator, with W = B. Considering three logic
variables x1, x2, x3 associated to the points in W and letting
x1 = 1 ⇐⇒ (−1, 0) ∈ B ∩ S−p and similarly for x2 and
x3 with respect to (0, 0) and (1, 0), we have p ∈ εB(S)⇐⇒
x1 = 1, x2 = 1 and x3 = 1. Hence, the local function of εB
is ψε(x1, x2, x3) = x1 x2 x3.

output 1

output 0

x1 x2 x3

W

Figure 3: Local function ψε applied on two distinct points.
If Wp is entirely contained in the foreground, then output is
1 at p; otherwise, it is 0.

Analogously, for the dilation operator we have p ∈
δB(S) ⇐⇒ ψδ(x1, x2, x3) = x1 + x2 + x3 = 1. Note that
the logic product term x1 x2 x3 in ψε(x1, x2, x3) corresponds
to the interval [B,B], and the terms x1, x2 and x3 in ψδ
correspond respectively to [{(−1, 0)}, B], [{(0, 0)}, B] and
[{(1, 0)}, B]. More specifically, each of the product terms in
the logic function corresponds to an interval operator. There is
a one to one correspondence between the sum of products form



of logic functions and the representation of image operators
as supremum of interval operators.

2) Internal contour points: Let a point in S be a contour
point if it has at least one of its 4 neighbors in the background.
Such contour detector operator can be defined using a 5-point
cross window. Figure 4 shows the eight patterns within the
5-point cross window such that the central point corresponds
to a contour point with a background point above it. Letting
x3 be the logic variable associated to the central point of W ,
and the other four variables as shown in Fig. 4, the logic
function that defines the operator is ψ(x1, x2, x3, x4, x5) =
x1 x3 +x2 x3 +x4 x3 +x5 x3. Each product term corresponds
to an interval operator. Figure 4 illustrates the elements in the
interval [{x3}, {x2, x3, x4, x5}].

x1

x2 x3 x4

x5

,

Figure 4: (Top left) the logic variables assigned to each point in
the cross window. (Top right) between brackets, the extremities of
the interval corresponding to the product term x1 x3. (Bottom) the
eight patterns included in the interval and that corresponds to the
product terms x1 x2 x3 x4 x5, x1 x2 x3 x4 x5, x1 x2 x3 x4 x5, and so
on. Filled squares correspond to foreground pixels and non-filled ones
to the background pixels.

D. Extension to gray-scale operators and some properties
Operators for gray-scale images can also be framed in

the lattice theoretical formulation by modeling gray-scale
images as elements of a complete lattice. An initially proposed
extension was based on the notion of umbra [22], [11], [9],
and later on the representation of images as functions. A
natural partial order relation between two gray level functions
f, g ∈ KE is defined as:

f ≤ g ⇐⇒ f(p) ≤ g(p), p ∈ E . (6)

Regarding this extension, a main difference between binary
and gray-scale is the complement operator. While the notion
of complement is clearly defined for sets (binary images),
there is no natural definition of the complement operation
for gray-scale images, and thus some variants have been
proposed [9], [23], [10]. Regardless of the specific definition of
the complement operation, the decomposition as a supremum
of interval operators also holds for gray-scale image operators.
Since the sup-representation of gray-scale image operators
may involve an extremely large number of basic operators,
their explicit representation does not favor computation. Alter-
native representations of the local function are more adequate
for computational processing, as will become clear afterwards.
Therefore here we do not include a detailed description of
representation related results. For more details, the reader may
refer to [19], [9], [24], [25], [26].

III. FORMULATION OF THE LEARNING PROBLEM

A common procedure to solve image processing tasks is
by means of combinations of multiple basic operators. Such
combination may include sequential pipelines, decision and
iteration subprocesses. Finding a satisfactory solution requires
a trial and error approach in which several configurations of the
composition, varying the basic operators and their parameters,
must be assembled and tested [8], [27], [10].

Since these are time consuming tasks, many efforts to
automate part or the whole design process have been proposed
in the field. Among them, the first approaches for designing
non linear window operators emerged in the 1980s. They were,
however, restricted to specific subclasses of filters such as the
median and stack filters [28], [14].

The representation of W -operators as a supremum of inter-
val operators, and in particular, its local characterization by
a function (see Eq. 1) opened a new and general path for
learning image operators from training images [29], [24].

In order to model the learning process, a performance
measure to be optimized must be defined. An image f is
assumed to be a realization of a random process F and input-
output pairs of images (f, g), representing observed images
and respective desired transformations, are assumed to be
realizations of a pair of random processes (F,G), with a joint
distribution P (F,G). Under these assumptions, the learning
problem is formulated based on a statistical approach. The
goal is to find an image operator Ψ such that Ψ(F) is the best
possible approximation of G.

The notion of proximity between G and Ψ(F) can be
modeled by means of a probabilistic measure. Let Ψ be a
W -operator characterized by the local function ψ defined on
W . Then, for any specific point p ∈ E, the mean absolute
error (MAE) and the mean square error (MSE) are defined
as:

MAE〈Ψ〉 = E[ |ψ(f−p|W )− g(p)| ] , (7)

MSE〈Ψ〉 = E[ (ψ(f−p|W )− g(p))2 ] . (8)

Considering wide sense stationarity and local definition,
position p is irrelevant and thus both the MAE and the MSE
can be written in terms of a local process (X,y), where X
is a random process that models observations on input images
through W and y is a random variable associated to the central
point of W on the output image:

MAE〈Ψ〉 = E[ |ψ(f−p|W )− g(p)| ] = E[ |ψ(X)− y| ] . (9)

The MAE and the MSE are minimized when the estimator
ψ(X) is, respectively, the mode and the mean of observed
outputs (y) for each observation X . In the binary setting,
both errors are equivalent and the optimal operator is the one
characterized by the following local function:

ψ(X) =

 1, if P (1|X) > P (0|X),
0, if P (0|X) > P (1|X),
0 or 1 if P (0|X) = P (1|X) = 0.5

(10)



This can be easily seen by expanding the MAE equation:

MAE〈Ψ〉 = E[ |ψ(X)− y| ]
=

∑
(X,y)

P (X, y)|ψ(X)− y|

=
∑

(X,y)

P (X)P (y|X)|ψ(X)− y|

=
∑
X

P (X)
[
P (0|X)ψ(X) + P (1|X)(1− ψ(X))

]
Note that the observations X such that ψ(X) = 1 correspond
to the kernel elements.

A. Estimating from training images

Local functions that characterize the optimal operators can
therefore be estimated from training images. For the binary
case, it is the function given in Eq. 10. Note that each training
image f has a finite support, which we denote Df . Given
an input-output pair (f, g) of training images, with Df =
Dg , samples are collected at each point p such that Wp ⊆
Df by sliding W over f . The local sample at p is the pair
(f−p|W , g(p)). All collected observations are pooled together.
The observed image patch, f−p|W , is called a window image.

However, several possible patterns usually will not be ob-
served in the training images and thus the estimated function
will be only partially defined. Logic minimization algorithms
and decision trees have been used previously for the general-
ization step of binary [29], [30] and gray-scale [31] operators,
respectively.

After the generalization of the function, the resulting op-
erator can be applied on test images similar to those used
for the estimation. Performance of the operators are usually
measured in terms of its empirical MAE/MSE on test images.
The empirical MAE of an operator with respect to a pair
(f, g) is computed as the pixel-wise mean absolute difference
between Ψ(f) and g :

Err =
1

|D′f |
∑
p∈D′f

∣∣∣ψ(f−p|W )− g(p)
∣∣∣ (11)

where D′f denotes set of points in Df at which samples are
collected.

B. Connections with Machine Learning

Under the perspective of machine learning, the local func-
tion ψ to be estimated can be seen as a classifier that assigns a
gray level value in K for each pattern in W . Thus, the image
operator learning problem described above can be modeled as
a typical classifier learning problem. Just to recall, in classifier
learning the goal is to learn a target function h : X → Y , from
a set of samples S ⊆ X × Y , where X is the feature space
representing the observations and Y is the set representing
the class labels. Hereafter we adopt some notations that are
common in the machine learning field. They will be introduced
below as we point out the connections between image operator
learning and classifier learning.

The step of sliding a window W , |W | = m, over the
training images and collecting samples of window images
can be seen as a process of transforming raw data (image
pairs) into a collection of feature vectors xi ∈ X = Km and
respective labels yi ∈ Y = K. Therefore, this corresponds
to a feature extraction step. An illustration of this step is
shown in Figure 5. As it can be seen, window constrained
subimages extracted from the input images are flattened (in
raster order) to generate the feature vectors. For a window
image xi extracted at a pixel p, the class label yi is the value
of the desired output image at the same pixel.
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Feature vectors
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Input images

Figure 5: Illustration of the feature extraction process (output
images not shown).

Estimation of the optimal local function corresponds to the
classifier training step. Although the lattice theoretical model
provides a canonical representation for these functions, it may
consist of a very large number of intervals and it may not
be suitable from a computational point of view. Thus, one
can consider learning the local function without fixing its
representation structure. The task of completing the function
definition (generalization) can be left to machine learning
algorithms.

By dividing the training procedure into two steps, feature
extraction and classifier training, we can build very flexible W -
operator learning systems. A typical image operator training
procedure consists of the following steps:

1) separate input-output pairs of images into training and
test images

2) extract feature vectors and respective labels from the
training images to build the training set.
Each set of identical window images can be reduced
to one exemplar with its class label being the estimate
value that minimizes the error measure (Eq. 10 if images
are binary). This reduces the amount of training data.
Moreover, if the classifier assigns consistent label for
each feature vector in the reduced training set, then an
optimal empirical error on the full training set will be
achieved. However, the impact on generalization is not
clear.
One can also consider a set of general features extracted
from each window image rather than just the flattened
window image. Although this does not improve training
error, it may greatly affect generalization performance.
Two very simple examples of this type of feature



processing are quantization (reducing the number of
gray levels in an image) and normalization. Other more
complicated representations may be computed from the
images. Notice that as long as only information from
the window images is used, no theoretical results on
W -operators are affected.

3) train a classifier from the training set (part of the training
set can be used for validation).
We can also change classifiers to match the characteris-
tics of the input patterns or to enforce a specific property
on the resulting operator. For instance, when dealing
with normalized data, suitable learning models can be
used.

4) take the trained classifier as the desired local function
and apply it on the test images, generating Ψ(f)

5) compare, for each test pair (fj , gj), the resulting image
Ψ(fj) with the expected output gj and compute the rele-
vant metrics (empirical MAE/MSE, accuracy, precision,
recall, F-measure, etc)
Note that, for binary output, the MAE is equivalent to
the 0− 1 loss and, therefore, minimization of the MAE
is equivalent to maximization of the accuracy.

The training/testing procedure of W -operators is schema-
tized in Fig. 6.

Input-output image pairs

Feature extraction

Classifier training

Classifier testing

Trained classifier

(local function) Transformed image

Training images Test image

Figure 6: A typical W -operator training/testing process. The
flow at the left (in green) represents the training process and
the one at the right (in blue) represents the testing process.
Multiple images pairs can be used for training (note that each
circle represents an input-output pair).

IV. STRATEGIES TO MITIGATE LEARNING RELATED ISSUES

As discussed above, after a training set is built by extracting
the feature vectors from input-output pairs of images, any
methods available for classifier training can be applied. As in
any usual machine learning problem, learning in the context of
image operator design is also subject to several computational
and statistical issues.

A typical question that often arises refers to how many train-
ing examples are necessary to obtain a good approximation
of the desired image operator. Practice shows that it largely
depends on the complexity of image content and processing
task, as well as image resolution. These factors influence the
choice of the window; the window should be large enough to
discriminate relevant patterns. If we consider k gray levels,
the number of different possible patterns for a window of size
m is km, a quantity that may be beyond available computing
resources. Moreover, since the number of available training
images is usually limited, large windows tend to generate poor
empirical errors, due to generalization error. Therefore, one of
the challenging issues is to determine an appropriate window
that is simultaneously useful for discrimination and that does
not result in large generalization error.

Several approaches can be used to address these challenges.
For instance, constraining the class of operators reduces the
classifier hypothesis space, improving variance error. Exam-
ples of constrained classes are the aperture [32] and stack [33]
filters. A two-level training strategy [30] is also an approach
that has been proposed to mitigate the difficulties.

A. Aperture operators

To overcome the need to deal with an extremely large
number of distinct window images when grayscale images
are considered, a subclass called aperture operators has been
proposed in [34], [31]. The class consists of operators that
are locally defined in the gray-level domain in a similar way
W -operators are locally defined in the spatial domain.

Let us first define gray-level translation. Let f : E→ K be
a grayscale image and c ∈ K. The grayscale translation2 of
f by c is given, for any p ∈ E, by (f + c)(p) = f(p) + c.

The local definition in the gray-level domain is based
on a grayscale (range) window R = {−r, . . . , r}, where
r is a positive integer. The windowing of f at level v
by the grayscale window R is the function f |Rv given by
(f |Rv)(p) = min {max {−r, f(p)− v} , r}. That is, the range
window is translated vertically such that its center matches v.
Then, f |Rv is such that the difference f(p)− v is constrained
to R.

A characteristic function ψ : W → K is called locally
defined in R iff, for any g ∈ KW , we have ψ(g) =
g(o) +βg(o)(g|Rg(o)), where βy , for any y ∈ K, is a function
from W to R. Thus, an aperture operator is a W -operator
that is characterized by a function ψ that is locally defined
in R. That is, for any f : E → K, there is βψ such that
[ψ(f)](p) = f(p)+βψ([f−p|W ]|Rf(p)). Instead of performing
the windowing of f at level f(p), one can consider other levels
such as the mean or median value of f |Wp

. In practical terms,
in a similar way we can control the size of the spatial window
W , we can control the height (aperture) of the range window
R.

2Let us for now ignore the fact that f(p) may surpass the maximum value,
k − 1.



B. Two level approach

The two-level approach [30] is based on combining sev-
eral image operators through a second stage of training, as
shown in Figure 7. First, n operators are trained individually,
each one with respect to a window Wi. Input images f are
then processed with these operators yielding n transformed
images Ψi(f), i = 1, 2, . . . , n. A new feature vector, called
second level pattern, to be used in the second training stage
is then built by concatenating the pixel values [Ψi(f)](p),
i = 1, 2, . . . , n, for each p ∈ D′Ψi(f). Second level patterns
have, thus, n feature components. In this scheme, the resulting

Figure 7: Two-level training scheme. Values of the three processed
images, respectively by Ψ1, Ψ2 and Ψ3, at a same point are
concatenated to form a feature vector, which is then classified by
the second-level operator Ψ.

final operator is called a two-level operator, with the individual
operators that are combined, Ψi(f), i = 1, 2, . . . , n, being
called first level operators, and the one that combines, Ψ, being
called the second level operator (or combiner).

The composition of W -operators is also a W -operator. If the
composition is sequential, the local function that characterizes
the resulting W -operator is usually related to a larger support
window [30]. This strategy can, therefore, be understood as
being similar to classifier combination [17], and in particular
to that cases in which multiple classifiers are designed us-
ing distinct subsets of features and then their outcomes are
combined to reach a final classification. This strategy may
be useful to avoid generalization errors that are due to high
dimensionality.

In this two-level framework, deciding the number of op-
erators to be combined and choosing windows for each of
them are the two main challenges. On the other hand, the
framework enables the application of clever machine learn-
ing techniques and methods to optimize generalization error

and computational cost. In fact, recent developments in W -
operator learning explore different techniques within the two-
level design approach [35], [36], [37], [38].

C. Window determination and selection

Recent window determination and selection methods for two
level operators follow a same basic algorithm. Given a window
domain D and a set of training images, first a set of candidate
windows, each contained in D, is created and then a subset
of them to be used in the combination is selected.

In [38], a method called WER (Window selection using
Entropy based Ranking) is proposed. First a set of candidate
windows is manually defined. Then, the windows are ordered
according to an improved conditional probability entropy,
computed for each window over the set of all training window
images collected from the training images. Next, operators
are trained only for the t top ranked windows, and then the
two level operators are trained iteratively starting with the
combination of the first two and adding to the group the next
operator in the ordered sequence. The process stops when a
combination with t first level operators is processed and the
combination with the best performance on a validation set is
chosen.

The methods in [35], [36] employ feature selection tech-
niques both to create windows and to select the windows to
be used in the second level operator.

In [35], Santos et al. initially create first level windows using
a grouping procedure that aims to decrease the Interaction
Information [39] between pixels. Then they use a forward
selection strategy based on a conditional mutual information
to order the resulting operators. The number of operators to
be combined is selected using a Minimum Description Length
approach.

The FS method, described in [36], generates candidate
windows by employing the Relief algorithm on the set of
points in D. Relief ranks features (window points) based on a
set of training instances (prototypes). Multiple window point
rankings are created by randomly generating different sets of
prototypes. Candidate windows are then created taking the 40
best features of each ranking and a W -operator is trained for
each of them. These operators are also ranked by the same
algorithm, setting them as the candidate features for the second
level pattern. The t best ranked operators are then used to train
a second level operator, where t is chosen in such a way as to
control the amount of observed unique training second level
patterns.

D. Regularization based window determination

The methods presented in the section above have two
weaknesses: (i) they do not jointly optimize the combination
of windows and (ii) they are limited by the windows that
are generated for the first level operators. The Near Infinitely
Linear Combination (NILC) method [40] overcomes these
weaknesses by simultaneously doing error minimization and
feature selection. This is possible by learning a linear model
using L1 regularization.



Let C = {Wi ⊆ D}, |C| = N = 2|D| be the set of all
subwindows of D and ψi be an operator trained with window
Wi. We model Ψ(2)(z) : {0, 1}2D → {0, 1} as a linear model
Ψ(2)(z) = wT z, where z ∈ {0, 1}N is a second level pattern
(z = (ψ1(x|W1

), . . . , ψN (x|WN
)) ). We assume an ordering

for all N windows and set z0 = 1, which means that the
operator trained with the empty window always output white
(1). The weights w ∈ RN are learned by minimizing the cost
function c expressed as the cross-entropy loss [41] plus a L1

regularization term (Zi• = zTi ):

min
w
c(w) = −

M∑
i=1

(yiZi•w + log(1 + eZi•w) + λ||w||1 (12)

In this equation, M is the number of training examples, Zi• =
zTi is the ith second level pattern and λ is the regularization
parameter.

Directly optimizing Eq. 12 requires knowing in advance the
full Z matrix. This is unfeasible, since it implies training an
exponential number of operators. We address this challenge
by adopting an active based method inspired by [42]. At the
optimal solution w∗, the optimatility conditions are:

−
M∑
i=1

Zij(yi − pi) + λ = 0 if w∗j > 0; (13a)

−
M∑
i=1

Zij(yi − pi)− λ = 0 if w∗j < 0; (13b)

− λ ≤ −
M∑
i=1

Zij(yi − pi) ≤ λ if w∗j = 0 . (13c)

where pi = eZi•w

1+eZi•w .
Given a solution w ∈ RN satisfying Eqs. 13a and 13b

for all wi 6= 0, we can check if adding a new operator
ψj to the combination decreases the cost by checking if
Eq. 13c holds for wj . In the positive case we can obtain
a new solution by solving Eq.12 restricted to the indices
{i|wi 6= 0} ∪ {j}. This induces an iterative algorithm (NILC)
that, in each step, generates a new operator ψj , checks if it
improves the current solution and updates it if necessary. The
operators are generated by randomly sampling a window from
C and training a W -operator in a separate training set.

Some advantages over previous methods are: (1) the regu-
larization parameter λ can be adjusted to include more or less
operators in the combination, avoiding the need to specify the
exact number of operators to be combined (Fig. 8 shows the
impact, in the accuracy, of the number of operators in the
combination); and (2) since at every step we have a valid
solution to Eq. 12, we can continue an once stopped training
if necessary. For instance, if slightly different new images are
available, an already trained operator can be updated by just
sampling new operators trained with the new images.
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Figure 8: Evolution of the number of operators and error in
the training set while NILC is running. The red line marks the
operator selected by the validation procedure.

E. Learning over large windows using kernel approximations

Kernel Support Vector Machines (kernel SVM) are known
to generalize well even in high dimensional data and could be
used to train W -operators on large windows. However, training
kernelized SVMs may have prohibitively high computational
and storage costs. In [43], we have used a recent technique
called kernel approximation [44], [45], which computes an
approximate solution to the kernel SVM problem. Given a
kernel k : X × X ⇒ R, the main idea of kernel approx-
imation is to find a feature map ϕ : X → RN such that
k(x, x′) ≈ ϕ(x)Tϕ(x′). The Nyström method [44] computes
this approximation from a (small) set of m examples {xi}mi=1

as

ϕ(x) = diag(
1√
λj

)U (m)TKx, (14)

where Kx = (k(x, x1), . . . , k(x, xm)) and λj and U (m) are
the eigen values/vectors of the Gram matrix of all xi, i =
1, . . . ,m.

Since binary and gray level inputs differ considerably in
their distribution, we adopt different kernels in each case. For
binary input images we use a polynomial kernel (Eq. 15).

K(x, x′) = (xTx′ + c)d . (15)

where d controls the degree of the polynomial and c ≤ 0. We
chose this kernel because the feature map for the polynomial
kernel with degree d contains all interaction terms of up to
d terms. Each interaction term can be interpreted as a pattern
detector, since its result is 1 only when all variables are 1.
This form also resembles the disjunctive normal form of a
Boolean function presented in Section II.

In gray level images, many patterns that are visually very
similar may actually differ in value for most of the pixels.
Thus, a notion of similarity between patterns is necessary.
Gaussian kernels (Eq. 16) can be interpreted as a soft threshold
between two patterns, with the bandwidth γ controlling the



tolerance of this measure3.

K(x, x′) = e−γ||x−x
′||2 . (16)

A “bigger” γ makes differences bigger, while a smaller one
accepts more changes in the patterns. Also, since the Gaussian
kernel is shift-invariant, it only takes into account the relative
brightness between patterns. Therefore, this kernel is adequate
to process gray level images.

The performance of the trained operators is affected by
parameters m (approximation size), d (degree of the poly-
nomial for the binary case) and γ (bandwidth of the Gaussian
kernel in the gray level case). These can be chosen using
cross validation. An example of typical behavior for these
parameters is shown in Figure 9. As the number of samples
used to compute the approximation increases, the error tends
to diminish. While for the polynomial kernel different values
for degree d do not result in significant differences in error,
for the Gaussian kernel differences in the value of parameter
γ may result in large differences in error.

V. TRIOSLIB – AN IMPLEMENTATION

TRIOSlib is a Python implementation of most of the
methods presented in previous sections. It integrates with
several scientific packages (such as Numpy and Scikit-learn)
and it was built to allow new methods to be implemented
without changing the library itself. TRIOSlib can be installed
using pip by executing $> pip install trios.

As described in Section III-B, a W -operator consists of
two parts: a feature extractor and a classifier. Instances of the
FeatureExtractor class extract patterns from the images,
which are then classified by an instance of Classifier
class. The WOperator class combines these two components
to train and transform images. Depending on the task being
tackled, a different combination of feature extractor and clas-
sifier may be adequate.

The most basic feature extractor just copies the pixel values
to a flat vector. More sophisticated techniques can be imple-
mented coupling general feature extraction and pre-processing
algorithms. For instance, window images for aperture opera-
tors are implemented as a feature extractor that subtracts the
center pixel value from all other features and saturating them
within the window range [−r, r] when necessary.

In practice, any classifier method can be used to train
a W -operator. TRIOSlib includes an implementation of the
ISI algorithm [25] for Boolean function minimization. This
algorithm was used in many earlier works [36], [37], [38],
[35]. Other works [32], [40], [43] have used Decision Trees,
which are available in TRIOSlib through a wrapper class
(SKClassifier) for scikit-learn models.

A basic code sample using raw pixels as features and
a decision tree as a classifier is shown below. Complete
documentation is available at http://trioslib.sf.net.

from trios.classifiers import SKClassifier
from sklearn.tree import DecisionTreeClassifier

3If the patterns are similar, the norm is small, so the kernel result.

from trios.feature_extractors import \
RAWFeatureExtractor

import trios
import numpy as np
import trios.shortcuts.persistence as p
# load training set
images = trios.Imageset.read(’images/level1.set’)
# create window
win = np.ones((5, 5), np.uint8)
# use Decision Tree Classifier
cls = SKClassifier(DecisionTreeClassifier())
# and raw pixels values as features
fext = RAWFeatureExtractor
op = trios.WOperator(win, cls, fext)
op.train(images)
# save trained operator
p.save_gzip(op, ’fname_here.op’)
# and optionally load it later using p.load_gzip
img = p.load_image(’images/jung-1a.png’)
# Second argument is application mask.
out = op.apply(img, img)
p.save_image(out, ’teste.png’)

Class Imageset is used to handle a collection of images.
An operator (op) is an instance composed of a window, a
feature extractor and a classifier. Method train is responsible
for extracting the features from the images in the training set
and then training the classifier. Method apply is responsible
for applying a trained operator on an image. Application of
the operator can be restricted to a subset of pixels in the
image domain. In the code, the second parameter in call
op.apply(img, img) means that the operator will be
applied only on the foreground pixels. This is useful when
one knows that the desired operator is anti-extensive (i.e.,
Ψ(S) ⊆ S).

VI. APPLICATION EXAMPLES

Due to length restrictions, the examples are presented in
a summarized form. A more complete description regrading
datasets, parameter values, scripts and results can be found
in the cited references and in the TRIOSlib [46] companion
website.

A. Document processing

Recognizing specific elements, such as text, figures, logo,
handwriting, and others, in document images is an impor-
tant step in document analysis. We illustrate the application
of trained W -operators on two document processing tasks:
text segmentation (TexRev dataset) and character recognition
(CharS dataset). These datasets have been used as a benchmark
for W -operator learning in previous works [30], [35], [38],
[40], [43].

In Table I we show the MAE of two-level operators obtained
with different methods, computed on a common test set. First
row (“Manual”) refers to manual definition of both the number
of operators to be combined and the individual windows. This
example illustrates the evolution obtained along the years.

A typical result for character recognition is shown in Fig. 10
and for text segmentatin in Fig. 11.

B. Staff Removal

Staff removal is a common task in Optical Music Recogni-
tion systems. It consists in removing the stafflines from music

http://trioslib.sf.net
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Figure 9: Validation error w.r.t. to changes in the kernel’s parameters. (a) Polynomial kernel; (b) Gaussian kernel.

Domain Method CharS TexRev

9× 7

Manual [30] (2009) 0.0050 0.026
WER [38] (2015) 0.0046 0.022
NILC [40] (2016) 0.0045 0.017
KA [43] (2016) 0.0042 0.024

Table I: Comparative test errors for datasets CharS and
TexRev.

Figure 10: Typical results for images in the CharS dataset.
At the top, a pair of input and expected output images. At the
bottom, from left to right, highlight of a region of the input
test, expected output, and resulting images.

scores (part of a pair of training images is shown in Fig. 1, at
the beginning of this text). Existing solutions usually employ
heuristic methods. Machine learning based methods are more
attractive to cope with image variations [36], [37], [40].

Table II compares the performance of trained image op-
erators (using FS, NILC and KA methods and also with
a manually designed set with the seven reference windows
shown in Fig. 12) with some of the state-of-the-art heuristic
methods (LTC [47], Skeleton [47] and LRDE [48]) on a test
set of the CVC-MUCIMA-2013 dataset [49]. W -operators

Figure 11: A typical result for images in TexRev dataset. Input
test image (left) and resulting image (right).

Method Acc (%) Rec (%) Spec (%) F1
LTC [47] 87.58 64.66 99.53 80.40
Skeleton [47] 94.50 86.97 99.03 92.24
LRDE [48] 97.03 94.02 98.84 95.97
FS [37] 97.34 95.87 98.22 95.90
Manual [36] 96.89 94.37 98.41 95.51
NILC [40] 97.10 94.58 98.61 96.07
KA [43] 96.23 92.85 98.26 94.88

Table II: Comparative results, accuracy (Acc), recall (Rec),
specificity (Spec) and F1-measure (F1), for the staffs dataset.

outperforms most heuristic methods. Even the operator based
on the set of reference windows obtained good results.

Samples of the resulting images are shown in Fig. 13.

C. Vessel Segmentation

This example illustrates the application of image opera-
tor learning for gray-scale image processing. The DRIVE
dataset [50] contains input and groundtruth images for the
segmentation of blood vessels in retina images. Method KA



Figure 12: Set of reference windows for staff removal [36].

Method Accuracy (%)
Staal [50] 94.42
Niemeijer [51] 94.16
Zana [52] 93.77
KA 93.91

Table III: Results for the DRIVE dataset.

is compared with three heuristic methods in Table III. The
parameters for KA were determined using a validation set.

Some result images are shown in Figure 14. All tested
methods missed the very thin vessels. Staal had better overall
performance being consistent with the results in Table III.
Nevertheless, note that the output of KA is mostly connected
even though each pixel is classified independently from the
others. This is a encouraging result that indicates that addi-
tional adjustments (for instance, other types of kernel) may
lead to better results.

VII. CONCLUSION

Image operator learning aims to mitigate image processing
tasks that demand knowledge and experience on building
pipelines of image operators and operations. The learning
framework is based on a theoretically solid foundation, namely
the characterization of image operators by local functions,
and a statistical estimation model that enables the formulation
of optimal image operator estimation as a classifier training
problem.

Learning methods may exploit and combine representation
structures such as the two level composition of operators and
machine learning techniques such as feature selection and
kernel learning. This tutorial summarized almost 25 years of
research in the area and presented an updated open source
implementation of the software to make the work easily
reproducible.
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