Introduction
to Linux for
Bioinformatics

A practical approach
1°" edition

David da Silva Pires
CEeLL CYCLE LABORATORY
BuTaNTAN INSTITUTE

INSTITUTO
BUTANTAN

A servico da vida

\CCGEp
7 7\

(\/ CeVIVAS 34")

Centro para Vigilancia Viral
e Avaliagdo Soroldgica

Intermational Centre for Genetic

Engineering and Biotechnology

Sao Paulo
June 17, 2024

Contents

54

1 FASTA
1.1 Theformat
Examples
Theheader
Thesequencedata.
Types e
1.2 Visualization
1.3 EXErcises o v v i i e e e e e
1.4 Solutions to eXercises v v v v i e
2 FASTQ
2.1 Theformat
Example
The sequence header
The character sequence
The quality header
The quality sequence
2.2 Visualization
2.3 EXErCiSes v v v i e e e e
2.4 Solutions to eXerciSes v v v v v e e e e e
3 CSV
3.1 Theformat
Examples
3.2 Visualization
3.3 EXercises e e e e
3.4 Solutions to eXerciSes v vt i e
4 GFF
4.1 Theformat
Examples
4.2 Visualization e
43 EXEICiSeS . . . v v v v i e e e e e e e e
4.4 Solutions tO XEerCiSes « v v v v v i e e e e e
5 BED
5.1 Theformat
0-base vs 1-base sequence coordinates
BEDToolssuite
Examples
Types . . o . e
5.2 Visualization
5.3 EXercises o i i e e

Solutions to €XEercises o e e e e e e e

S O O 0 J N L

15
15
16
16
16
16

17
17
17
18
18
18

1 FASTA 5

FASTA

1.1| The format

The FASTA file format is a widely used file format in the field of bioinformatics. It
is text-based and it is used to store both nucleotide (DNA or RNA) and amino acid
(protein) sequence data.

The origin of the FASTA format is due to an homonimous software package, de-
veloped in the late 1980 by David J. Lipman and William R. Pearson. The software
was one of the first widely-used database similarity search tool. It was designed to
quickly compare DNA or protein sequences to search for similarities and differences
and the FASTA format was used to store and exchange the input sequences. The
program can still be used if you are working with limited resources or needs a more
simple approach.

Its simplicity allows easy manipulation and analysis of the sequences using text
processing tools and script languages like Bash, R and Python.

It is an essential tool for researches working in fields such as genomics, proteomics
and evolutionary biology as it provides a convenient way to store, share and analyze
large amounts of sequence data.

Since its development, the FASTA format has become a widely used standard
in the bioinformatics community and has been implemented in many other software
programs and databases.

Some examples of software programs and databases that support FASTA files in-
clude:

BLAST: The Basic Local Alignment Search Tool is a widely used software pro-
gram for searching for similarities between sequences. URL: https://blast.
ncbi.nlm.nih.gov/Blast.cgi.

ClustalW: A software program for aligning sequences.

GenBank: A database of DNA sequences from many organisms. URL: https://
www.ncbi.nlm.nih.gov/genbank.

Uniprot: A database of protein sequences from many organisms. URL: https://
WWW.uniprot.org.

In a FASTA file, each sequence is represented by a single description line (header)
followed by one or more lines of sequence data.

Examples
e Gene (partial coding sequence of SARS-CoV-2 Spike protein):

>hCoV-19_Spike_CDS
ATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTCATGCCGCTGTTT
AATCTTATAACTACAACTCAATCATACACTAATTCTTTCACACGTGGTGTTTATTACCCT
. (60 more lines)
CTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCA
GTGCTCAAAGGAGTCAAATTACATTACACATAA

e Protein (complete SARS-CoV-2 Spike protein):

6 LINUX FOR BIOINFO

>hCoV-19_Spike_protein
MFVFLVLLPLVSSQCVMPLFNLITTTQSYTNSFTRGVYYPDKVFRSSVLHLTQDLFLPFF
SNVTWFHAISGTNGTKRFDNPVLPFNDGVYFASTEKSNITRGWIFGTTLDSKTQSLLIVN
NATNVFIKVCEFQFCNDPFLDVYHKNNKSWMESESGVYSSANNCTFEYVSQPFLMDLEGK
QGNFKNLREFVFKNIDGYFKIYSKHTPIIGRDFPQGFSALEPLVDLPIGINITRFQTLLA
LNRSYLTPGDSSSGWTAGAADYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTL
KSFTVEKGIYQTSNFRVQPTESIVRFPNVTNLCPFHEVFNATRFASVYAWNRTRISNCVA
DYSVLYNFAPFFAFKCYGVSPTKLNDLCFTNVYADSFVIRGNEVSQIAPGQTGNIADYNY
KLPDDFTGCVIAWNSNKLDSKHSGNYDYWYRSFRKSKLKPFERDISTEIYQAGNKPCKGV
KGPNCYFPLQSYGFRPTYGVGHQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNF
NGLTGTGVLTKSNKKFLPFQQFGRDIVDTTDAVRDPQTLEILDITPCSFGGVSVITPGIN
TSNQVAVLYQGVNCTEVSVATHADQLTPTWRVYSTGSNVFQTRAGCLIGAEYVNNSYECD
IPIGAGICASYQTQTKSRRRARSVASQSITAYTMSLGAENSVAYSNNSIAIPTNFTISVT
TEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLKRALTGIAVEQDKNTQEVFA
QVKQIYKTPPIKYFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGD
TAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMA
YRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLFSTTSALGKLQDVVNHNAQALNTLV
KQLSSKFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAETIRASAN
LAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICH
DGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQL
ELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL
GKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEP
VLKGVKLHYT

e Genome (partial, SARS-CoV-2):

>hCoV-19/Brazil /DF-LACENDF /2024 |EPI_ISL_19165654|2024-03-11
TACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACG
AACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAA

(493 more lines)
GAACAATGCTAGGGAGAGCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAG
TA

o Adapter:

>ONT_LA_TS Oxford Nanopore Ligation Adapter Top Strand
TTTTTTTTCCTGTACTTCGTTCAGTTACGTATTGCT

The header
Model:
>unique_id optional additional information

The format allows identification names and comments preceding the sequences.

FASTA record indicator: *>’. The description line starts with a greater than sign
symbol.

Unique sequence identifier: it follows immediately after the ‘>’ symbol, without
even a single space character between the two. It can be an overall adopted identifica-
tor, used at official databases, or an arbitrary code, like "genel", "gene2", etc.

Additional information: the field after the unique ID is optional. It can contain the
locus, the name of the gene, the functional annotation, the related species, the length
of the sequence, data about the sequencing machine, etc.

1 FASTA 7

The sequence data

Model:
AGATAATACAAGAGA

The sequence data consists of a string of letters representing the nucleotide bases,
for DNA or RNA sequences, or amino acids, for protein sequences.

If the sequence is too long, it is usual to limit the number of characters per line.
Common limits are 60 and 80. This way, it is easier to read all the sequence by moving
the contents of the file vertically instead of horizontally.

Nucleotides Each nucleotide is represented by only one letter.
Extensions: fasta, fa, fna, ffn, frn.

Masking In bioinformatics, masking in FASTA files is a technique used to hide or
mark certain regions of a genomic sequence, typically repetitive regions, to facilitate
further analysis such as read mapping. There are two main types of masking: hard
masking and soft masking.

Hard masking involves replacing the nucleotides in the regions to be masked with
the letter ‘N’. For example, if a segment of a genome is hard-masked, a sequence
that originally reads ‘ATGCGTACG’ might be converted to ‘ATNNNNACG’. This
method is used to completely hide repetitive or low-complexity regions from analysis.
By replacing nucleotides with ‘N’, these regions are effectively ignored in downstream
processes such as sequence alignment or assembly. This can help prevent mismatches
and false positives that might occur due to the repetitive nature of these sequences.

In contrast, soft masking retains the nucleotide information but changes the case of
the letters to lowercase. For instance, a sequence that originally reads ‘ATGCGTACG®
might be converted to ‘ATgcgtaCG* in its soft-masked form. This approach is used
to mark regions as repetitive or low-complexity while still preserving the nucleotide
sequence information. As a result, certain bioinformatics tools can decide whether
to use these regions based on the context of the analysis. For example, some aligners
might ignore the lowercase regions during the initial alignment phase but still use them
to refine the alignment later.

The applications of masking, whether hard or soft, are primarily focused on high-
lighting repetitive sequences in the genome, such as transposable elements, satellite
DNA, or other low-complexity regions. These regions can complicate various ge-
nomic analyses because their repetitive nature can lead to ambiguous alignments and
false positives. In the context of read mapping, masked regions can be disregarded
or treated with caution to improve the accuracy of the mapping. This is particularly
important in next-generation sequencing (NGS) where reads are often short and repet-
itive sequences can cause multiple potential alignment sites, leading to confusion and
errors in the mapping process.

Thus, hard masking and soft masking serve crucial roles in managing repetitive
regions in genomic analyses. Hard masking hides these regions completely, while soft
masking marks them in a way that retains the sequence information. Both methods
aim to prevent alignment errors and improve the accuracy of processes such as read
mapping, ensuring more reliable and precise genomic analyses.

LINUX FOR BIOINFO

Amino acids Each aminoacid is represented by a code composed by only one char-

acter.

Extension: fasta, fa, faa, pep.

Types

Simple FASTA: A simple FASTA file contains a single sequence.

multiFASTA: In contrast, a multiFASTA file contains multiple sequences, each with

its own header and sequence lines. The sequences are concatenated in the same
file, and each new sequence starts with a *>’ character. This format is useful
for storing and managing multiple sequences within a single file, which is often
needed in genomic analyses where large datasets comprising many sequences
must be processed. An example of a multiFASTA file is shown below:

>sequence_1
ATGCGTACGTTAGC
>sequence_2
CGTAGCTAGCTAGC
>sequence_3
TGCATGCATGCA

FASTA 2-line: The FASTA 2-line format is a specific variant of the FASTA format

where each sequence is represented using exactly two lines: one for the header
and one for the sequence itself. In traditional FASTA files, the sequence can
span multiple lines, with each line typically being 60-80 characters long. How-
ever, in the FASTA 2-line format, the entire sequence is presented on a single
line, directly following the header line.

Here’s an example of the traditional FASTA format:

>sequence_1
ATGCGTACGTTAGCTAGCGTAGCTAGCTAGCT
AGCGTAGCTAGCTAGCTAGCTAGCTAGCTAGC
>sequence_2
CGTAGCTAGCTAGCTAGCGTAGCTAGCTAGCT
AGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCT

In this format, each sequence can be broken into multiple lines for readability
and compatibility with certain tools.

In contrast, the FASTA 2-line format would look like this:

>sequence_1
ATGCGTACGTTAGCTAGCGTAGCTAGCTAGCTAGCGTAGCTAGCTAGCTAGCTAGCTAGCTAGC
>sequence_2
CGTAGCTAGCTAGCTAGCGTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCT

1 FASTA 9

Visualization

Scale 20 bases} { wuhCorl
NC_045512v2; | 21565 21,570 21575 21,580 21,585 21,590 21,595/ 21,600 21,605 21,6101 21,615 21,620 21,625 21,630|

~->ACAAUGUUUGUUUUUCUUGUUUUAUUGCCACUAGUCUCUAGUCAGUGUGUUAAUCUUACAACCAGAACUCAAUUAC
F A s %

L L P \ S

Y H v

s \"
NCBI Genes from NC_045512.2
LS v S8 S

Q

UniProt Precursor Proteins (before cle:
N e e s SR R~

Q
7 VA ——. N
UniProt Protein Products (Polypeptid €]
S glycoprotein lo-m@i_-m-o-_
Spike protein S1
UniProt Domains

Protein Domains I

UniProt Amino Acid Mutations
] [
Spike protein mutations from community annotation (Feb 2021)
Mutations in Variants of Concern (VOC), Interest (VOI), or Under Monitoring (VUM) (configure

Mutations

to show more lineages)
Delta AA Muts []
Omicron BA.2 AA Muts I
Omicron XBB.1.5 AA Muts
micron XBB.1.16 AA Muts
Omicron EG.5.1 AA Muts
Omicron JN.1 AA Muts .

1.3| Exercises

@ Creating a file with the command cat. Use the command cat to create a file
called methionine. fasta whose contents is a FASTA record identified as “me-
thionine” at the header and with the sequence “ATG” in the second line.

@ Creating a file with the nano editor. Use the editor nano to create a file called
stopCodons. fasta whose contents are three FASTA records, each one with the
sequence of one of the three possible stop codons: amber (TAG), ochre (TAA) and
opal (TGA).

® Searching for patterns. List only the header lines of a multiFASTA file.

@ Masked genomes. Determine which genome in the fileExamples directory is
unmasked, which is hard masked, and which is soft masked.

® Sequence count. Count the number of records in a multiFASTA file.

® Processing FASTA metadata. Remove the description (metadata) from each
record in a multiFASTA file, leaving only the identifier and the sequence.

@ List of IDs. Obtain a list of all identifiers from a multiFASTA file.

Locating specific sequences. Count how many sequences in a genome file contain
the motif AGATAGAGA. And the motifs AGATAATACA and AGATATAGAGA?

® Sequence extraction. Extract a specific sequence from the FASTA file based on
its header.

@ Sort by length. Sort the sequences in the FASTA file based on their lengths, from
shortest to longest.

@ Short sequence removal. Write a script that removes all sequences from the
FASTA file that are less than 10000 nucleotides.

® Translation of DNA sequences. Translate DNA sequences into proteins.

10 LINUX FOR BIOINFO

FASTQ
The format

The standard file format of sequences produced by sequencing machines like [llumina
is the FASTQ format. Each library generates files with millions of reads. Each read
has four lines.

Example

INlumina SARS-CoV-2 sequencing example. fastq:

@VHO0451:1:AAAISGWM5:1:1101:43624:1095 2:N:0:CCAAGAGGTG+CTGGCTCGTT
GCATTAATACAGCCACCATCGTAACAATCAAAGTACTTATCAACAACTTCAACTACAAATAGTAGTTGTCT
+

CCCCCCCCCCCLCLCLLLLCLe; ceecceeeeecccece-ceececccccecce-cececcce;c;eeecececcccc
@VHO0451:1:AAAISGWM5:1:1101:44855:1114 2:N:0:CCAAGAGGTG+CTGGCTCGTT
ATATCTGGGTTTTCTACAAAATCATACCAGTCCTTTTTATTGAAATAATCATCATCACAACAATTGTATGT
+
CCCCCCCCLLCLeeceee-creceecceecceecceccceccceccececceccce;ceeecccececceccce-

The sequence header

It contains a unique ID for each read. It may contain the name of the machine that
sequenced the read, the name of the project, the number of the lane at the flow cell
(from the eight available), the exact location where that sequence was located in that

lane. In the case of a paired-end read, it can also contain which of the pairs that read
represents.

The character sequence

The second line of the read has the DNA (or cDNA in case of RNA) sequence.

The quality header

Nowadays it contains a ‘+’ signal, which is basically a placeholder. But originally, the
plus signal was followed by the same unique ID present at the sequence header.

The quality sequence

The fourth line contains the quality of the sequence.
The quality score is usually encoded as Phred+33, which goes from 0 to 41.

2 FASTQ 11

XX .
IITIIIIIIIIIIIIIIIIIIIIIIIIIIIITIIIIIIIIL.

33 59 64 73 104 126
Divvenenennnnnnnnnnananns 26...310000unn 40
=5.0000ceennnn N 40
0.2 iciececescnnnsnnncnnne 26...3lecncnnns 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

It is usual at Illumina sequences that the highest quality bases are in the beginning
of the sequence (5’ side) and that it decreases as it approaches the end of the sequence
(3’ side).

Phred+33 is a scoring system that encodes the quality as a probability of the cor-
rectness of each base in a sequence. The higher the value, the higher the probability
that the base is correct.

Visualization

Quality scores across all bases (Sanger / lllumina 1.9 encoding)

34 | T =

= oL T

» T

< T B I

26 [1|
24 I

22 =y [

20 = -

18

16

14

12 1

10

B

5

4

. | .| =

° T 2 5 2 5 5 7 8 9 101a 20-24 50-34 40-44 50-54 60-64 70-74

Position in read (hp)

Exercises

@ Sequence count and average quality. Write a command to count the total number
of sequences in a FASTQ file and calculate the average length across all sequences.

@ Removing low-quality sequences. Write a command to remove all sequences
from the FASTQ file that have an average quality below 20.

® Conversion to FASTA Format. Convert the FASTQ file to FASTA format, keep-
ing only the sequence and discarding quality information.

@ Extraction of Sequences with Specific Motif. Extract all sequences from the
FASTQ file that contain a specific nucleotide motif.

12 LINUX FOR BIOINFO

® Filtering by sequence length. Remove all sequences from the FASTQ file that are
less than 100 nucleotides long.

® Calculating average sequence length. Calculate the average length of sequences
in the FASTQ file.

@ Nucleotide counting. Count the number of each type of nucleotide (A, C, G, T) in
the FASTQ file.

Removing duplicate sequences. Remove duplicate sequences from the FASTQ
file.

CSV

E The format

CSV stands for Comma Separated Values. CSV files are a way to store data in a very
simple format. They are basically plain text files that contain a spreadsheet. Each row
of the text file is a separate row in the spreadsheet. Each column is separated by a
comma. Thus comma separated values.

The advantage to a CSV file is it is not proprietary. It is not a Microsoft Excel
file that can only be open in Excel or specific to any spreadsheet software. It is a very
basic format that can be opened in any spreadsheet like MS Excel or Google’s Sheets.
So when someone wants to provide some data in a very basic format that doesn’t rely
on the other person having a particular app, a CSV file is a great way to do that.

Examples
sample.csv

Store,Apples,Oranges,Pears
A,32,15,20
B,67,96,87
C,47,67,21
D,83,10,17
E,87,82,86
F,15,17,92

employees.csv

Name,Age,Occupation

John Doe, 30,Software Developer
Jane Smith,28,Data Analyst
Alice Johnson,35,Project Manager

Visualization

csvlook employees.csv

4 GFF 13

| Name | Age | Occupation |

John Doe	30	Software Developer
Jane Smith	28	Data Analyst
Alice Johnson	35	Project Manager

Exercises

@ CSV data extraction Write a command to extract specific columns (e.g., GeneID
and Expression Level) from a CSV file containing gene expression data.

@ Data filtering based on conditions. Filter the rows in a CSV file containing mu-
tation data to only include deepeness greater than 50.

4] GFF

4.1| The format

GFF stands for General Feature Format. Other options are Gene-Finding Format and
Generic Feature Format. It is a file format used for describing genes and other features
of DNA, RNA and protein sequences.

GFF files are composed by nine columns:

@ seqid: The name of the sequence where the feature is located.

@ source: Keyword identifying the source of the feature, like a program (e.g., Au-
gustus or RepeatMasker) or an organization (like TAIR).

® type: The feature type name, like gene or exon. In a well structured GFF file,
all the children features always follow their parents in a single block (so all ex-
ons of a transcript are put after their parent transcript feature line and before any
other parent transcript line). In GFF3, all features and their relationships should be
compatible with the standards released by the Sequence Ontology Project.

@ start: Genomic start of the feature, with a 1-based offset. This is in contrast with
other 0-offset half-open sequence formats, like BED.

® end: Genomic end of the feature, with a 1-base offset. This is the same end coor-
dinate as it is in O-offset half-open sequence formats, like BED.

® score: Numeric value that generally indicates the confidence of the source in the
annotated feature. A value of “.” (a dot) is used to define a null value.

@ strand: Single character that indicates the strand of the feature; it can assume the

values of “+” (positive, or 5° — 3’), (negative, or 3> — 5°) or “.” (undeter-
mined).

T3]

phase: Phase of CDS features; it can be either 0, 1 or 2 (for CDS features) or "."
(for everything else).

@ attributes: All the other information pertaining to this feature. The format, struc-
ture and content of this field is the one which varies the most between the three
competing file formats.

14 LINUX FOR BIOINFO

Examples

spikeDomains.gff

##gff-version 3

Sequence . polypeptide 1 1270 . +
ID=Sequence;md5=9d13bab97d5cfb8£3b918£a30280375c

Sequence Phobius protein_match 1 13 . + .

date=27-05-2024;Target=Sequence 1 13;ID=match$1_1_13;signature_desc=Signal
peptide region;Name=SIGNAL_PEPTIDE;status=T
Sequence Pfam protein_match 345 523 1.2E-34 +

date=27-05-2024;Target=Sequence 345
523;ID=match$2_345_523;signature_desc=Betacoronavirus spike glycoprotein S1,
receptor
binding;Name=PF09408;status=T;Dbxref="InterPro:IPR0®18548", "Reactome:R-HSA-
9678110", "Reactome:R-HSA-9679509", "Reactome:R-HSA-9683686", "Reactome :R-HSA-
9683701","Reactome:R-HSA-9692916", "Reactome:R-HSA-9694322", "Reactome :R-HSA-
9694548" , "Reactome:R-HSA-9694614", "Reactome:R-HSA-9694635", "Reactome : R-HSA-
9705671","Reactome:R-HSA-9733458"

Visualization

Exercises

@ Total feature count. Write a command to count the total number of features (e.g.,
genes, exons) in a GFF file.

@ Feature types. List all unique feature types (e.g., gene, exon) present in the GFF
file. How many of each feature are there?

BED

E The format

BED stands for Browser Extensible Data.
BED files have three required fields and nine additional optional fields.
The three required columns are:

@ chrom: Chromosome (e.g., chrl, chrY, chr2_random) or scaffold (e.g., scaffold10,
scaffold10671) name.

@ chromStart: Starting position (coordinate) on the chromosome or scaffold for the
sequence (feature) considered. The first base on the chromosome is numbered O.

® chromEnd: Ending position (coordinate) on the chromosome or scaffold for the
sequence (feature) considered. This position is non-inclusive, unlike chromStart.

The nine additional optional columns are:
4. name: Name of the line in the BED file.

5. score: Score between 0 and 1000.

5 BED 15

[T3EL

6. strand: DNA strand orientation. It can be “+” (positive),
the strand doesn’t matter).

(negative) or “.” (if

7. thickStart: Starting coordinate from which the annotation is displayed in a thicker
way on a graphical representation (e.g,: the start codon of a gene).

8. thickEnd: End coordinate from which the annotation is no longer displayed in a
thicker way on a graphical representation (e.g.: the stop codon of a gene).

9. itemRgb: RGB value in the form R,G,B (e.g.: 255,0,0) determining the display
color of the annotation contained in the BED file.

10. blockCount: Number of blocks (e.g., exons) on the line of the BED file.

11. blockSizes: List of values separated by commas corresponding to the size of the
blocks (the number of values must correspond to that of the blockCount).

12. blockStarts: List of values separated by commas corresponding to the start-
ing coordinates of the blocks, coordinates calculated relative to those present in
the chromStart column (the number of values must correspond to that of the
blockCount).

The main reason a BED file is attractive for use is its simplicity in just giving you
the start, the stop and the chromosome that each feature is encoded

0-base vs 1-base sequence coordinates

1-base 1 2 3 4 5 6 7 8 9

0-base o |1 |2 |3 |4 |5 |e |7 |s

1-base: Inclusive start and inclusive end.

0-base: Inclusive start and exclusive end.

Convert 0-base to 1-base:
e startl = startO + 1.

e endl = endO.

BEDTools suite

Swiss-army knife of tools for a wide-range of genomic analysis tasks.

Toolkit that enables genomic arithmetic, i.e., set theory on the genome.

Can be used on multiple files in widely-used genomic file formats: BED, BAM,
GFF/GTF and VCF.

Sintax: bedtools sub-command [OPTIONS] <FILE>

16 LINUX FOR BIOINFO

Sub-command examples: sort, intersect, closest, window, getfasta, random, shuf-
fle, slop.
Sorting regions in a BED file: bedtools sort [OPTIONS] -i <BED/GFF>

$> cat A.bed
chrl 800 1000
chrl 80 180
chrl 1 10

chrl 750 10000

$> bedtools sort -i A.bed
chrl 1 10

chrl 80 180

chrl 750 10000

chrl 800 1000

Finding overlapping regions with BEDTools:

$> bedtools intersect [OPTIONS] -a <FILE> -b <FILE1, FILE2, ..., FILEN>

Identifying regions within a window:

$> bedtools window [OPTIONS] [-a | -abam] -b <BED/GFF/VCF>

Extension The bed extension is the most common. The number of columns some-
times is noted in the file extension: bed3, bed4, bed6, bed12.

Examples
dummy.bed3

chrl 14 200
chrY 140 2000
scaffoldl10® 41 42

Types
BED3

BEDS

BED6

BEDY9

5 BED

BED12

BEDn+m

Visualization

Exercises

17

