MAC0329 - Álgebra Booleana e Aplicações

Lista de Exercícios 1

Data de entrega: 19 de abril de 2002

Prof. Junior Barrera

1. Give the graphical representation of the relation α from $A \equiv \{1, 2, 3\}$ to $B \equiv \{a, b, c\}$.

$$R_{\alpha} \equiv \{(1, a), (1, b), (2, a), (2, c), (3, a), (3, b), (3, c)\}$$

- 2. Show that for any binary relations α and β from A to B, we have
 - a) $(\alpha^{-1})^{-1} = \alpha$
 - b) $\alpha^{-1} = \beta^{-1}$ if and only if $\alpha = \beta$
 - c) $\alpha^{-1} \subseteq \beta^{-1}$ if and only if $\alpha \subseteq \beta$
- 3. Define the complement of a relation α , denoted $\bar{\alpha}$, as the relation such that $a \bar{\alpha} b$ if and only if $(a, b) \notin R_{\alpha}$. Show that $(\bar{\alpha})^{-1} = \overline{(\alpha)^{-1}}$.
- 4. Determine which one of the following sets defines a function.
 - a) $\{(i, i^2) : i \text{ is integer } > 1\}.$
 - b) $\{(a,(b,c)),(a,(c,b)),(b,(c,d))\}\$ for $A \equiv \{a,b,c,d\}.$
- 5. Determine which one of the following functions satisfies the properties of being one-to-one (injection) or onto (surjection).
 - a) Let f be a function from P, the set of positive integers to itself such that, for each $n \in P$, f(n) = n + 1. (f is called successor function)
 - b) Let f be a function from the set $K \equiv \{1, 2, ..., k\}$ of positive integers less than or equal to k to itself such that

$$f(i) = \begin{cases} i+1, & \text{for } 1 \le i < k \\ 1, & i = k. \end{cases}$$

c) Let $f: P \to \{0, 1, 2, 3\}$ such that for each $i \in P$,

$$f(i) = \begin{cases} 0, & \text{if } i \text{ is divisible by 3} \\ 1, & \text{if } i \text{ is divisible by 7} \\ 2, & \text{if } i \text{ is divisible by 21} \\ 3, & \text{otherwise.} \end{cases}$$

1

6. Let $f: A \to B$ be a given function and $A' \subseteq A$, $B' \subseteq B$. Show that

a)
$$A' \subseteq f^{-1}(f(A'))$$

b)
$$f(f^{-1}(B')) = B'$$

where $f^{-1}(B') = \{a : a \in A \text{ and } f(a) \in B'\}$. (Recall that f^{-1} is the inverse binary relation of f, considered as a binary relation.)

7. Determine whether each of the following relations, defined by ordered pairs (m, n) of positive integers, has each of the properties: reflexivity, symmetry, antisymmetry and transitivity.

a) m is divisible by n

b) $m + n \ge 50$

c) m+n is even

d) m+n is odd

e) mn is even

f) m is a power of n

g) m + n is a multiple of 3 h) m is greater than n

- 8. Let α be a relation on a set A. Is the relation defined by $R_{\alpha} \cap R_{\alpha^{-1}}$ symmetric?
- 9. A relation α on A is said to be *irreflexive* if for eah $a \in A$, $(a, a) \notin R_{\alpha}$. Show that a nonempty symmetric and transitive relation cannot be irreflexive.
- 10. Determine which of the following sets define an equivalence relation and which define a compatibility relation.

a) $A \equiv \{(x, y) : x \text{ and } y \text{ are people of the same age}\}$

b) $B \equiv \{(x, y) : x \text{ and } y \text{ are cousins}\}$

11. a) Which of the following tables of binary operations on the set $\{1,2\}$ is associative?

	1	2		1	2	_		1	2	_		1	2		1	2
1	1	1	1	1	1		1	1	2	•	1	1	2	1	2	1
2	1	2	2	2	2		2	1	1		2	2	2	2	1	2

- b) Which of these operations is commutative?
- 12. For each of the following binary operations *, determine whether it is associative or commutative.
 - a) On the integers, $a \star b = a b$.
 - b) On the positive integers, $a \star b = a^b$.
 - c) On the integers, $a \star b = ab + 5$.