Álgebra Booleana

1. Symbolize the following statement and determine its truth values. If it is hot in Arizona and it is raining outside or demonstrators are in the streets, then it is hot in Arizona, demonstrators are in the streets, and it is snowing in Argentina.
2. Suppose three one-digit binary number a, b and c are to be added together to form a two-digit number whose digits are denoted by s1s2. For each of the above five binary digits, define corresponding capital letter to be a statement variable which is True whenever the small letter digit is 1 and False otherwise. Determine a truth functional expression for s 2 such that s 2 is true whenever $\mathrm{s} 2=1$. Determine a similar expression for s1. Construct the diagram of logic circuits realizing s2 and s1.
3. A logic circuit is to be designed having 4 inputs $\mathrm{y} 1, \mathrm{y} 0, \mathrm{x} 1$ and x 0 . The pair of bits y 1 y 0 and x 1 x 0 represent 2-bit binary numbers with y 1 and x 1 as the most significant bits. The only circuit output, z , is to be 1 if and only if the binary number $\mathrm{x} 1 \times 0$ is greater than or equal to the binary number yly0. Determine a minimal sum of products expression for z .
4. A prime number is a number which is only divisible by itself and 1. Suppose the numbers between 0 and 31 are represented in binary in the form of the five bits

$$
x 4 \times 3 \times 2 \times 1 \times 0
$$

where x 4 is the most significant bit. Design a primer detector. That is, design a combinatorial logic circuit whose output, z , will be 1 if and only if the 5 input bits represent a prime number. Do not count 0 as a prime. Base your design on obtaining a minimal two-level representation.
5. Let the dual of a Boolean function be denoted f^{*}. Prove the theorem:

$$
f^{*}\left(x_{1}, x_{2}\right)=\bar{f}\left(\bar{x}_{1}, \bar{x}_{2}\right) .
$$

6. A Boolean functions is self-dual if the dual of this function is equal to the function itself ($f=f^{*}$). Show that there are $2^{2 n-1}$ selfdual functions of \boldsymbol{n} variables.
7. Prove that
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} f\left(1, x_{2}, \ldots, x_{n}\right)+\bar{x}_{1} f\left(0, x_{2}, \ldots, x_{n}\right)$
8. Determine a minimal sum of products (product of sums) realization for the following incompletely specified functions:
(a) $f(A, B, C, D)=\sum m(1,3,5,8,9,11,15)+d(2,13)$
(b) $f(W, X, Y, Z)=\sum m(4,5,7,12,14,15)+d(3,8,10)$
(c) $f(A, B, C, D, E)=\sum m(1,2,3,4,5,11,18,19,20,21,23,28,31)+$ $\mathrm{d}(0,12,15,27,30)$
(d) $A, B, C, D, E)=\sum m(7,8,9,12,13,14,19,23,24,27,, 29,30)+$ $\mathrm{d}(1,10,17,26,28,31)$
(e) $\mathrm{F}(\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum \mathrm{m}(0,2,14,18,21,27,32,41,49,53,62)+$ $d(6,9,25,34,55,57,61)$
