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Introduction

• Some medical signals are: EEG, ECG,  ultra 

sound, tomography, etc.

• These signals are a great source of 

information about the human body

• For fully exploration of these data, Digital 

Signal Processing Techniques are necessary

• DSP: Algebra + Statistics  + Computation



Introduction

• Techniques for the identification of genetic 

code are well known

• Soon the code of all genes will be known

• This knowledge open the way for one of the 

greatest challenges of science:  the 

understanding of genes functionality



Introduction

• Sets of genes constitute dynamical systems

that control sequences of Biochemical 

reactions, called pathway

• The pathways in a cell define its activities

• States of large sets of genes can be observed 

by the microarray technology

• Gene states observed in time are digital 

signals



Introduction

• Gene states may describe properties of 

tissues. Pattern Recognition techniques 

permits to predict tissue properties. 

Example: cancer classification

• System Identification techniques permit to 

estimate net architectures and dynamics. 

Example: control of cell division



Knowledge evolution in genetics

• Heredity - Mendel (1866)

• The phenotypes of an individual depends on 

genes of his parents.



Knowledge evolution in genetics

• Chromosome Theory - Morgan (1910)

• Genes were situated in chromosomes



Introduction

• The molecular structure of chromosomes

(Watson and Crick - 1953)

• DNA structure: the double helix

• Four basis: adenine(A), guanine(G),

thymine(T), cytosine(C)

• genes are sequences of nucleotides 



Introduction



Introduction

• DNA manipulation

• cut, replication and decoding



Introduction

• Genetic engineering

• species modification, drug production



Introduction

• Genes control the metabolism

• Metabolism occurs by sequences of 

enzyme-catalyzed reactions.

• Enzymes are specified by one or more 

genes



Introduction



Introduction

• Gene expression



Data acquisition



Data acquisition



Data acquisition

Quantization - {-1,0,1}



Data Analysis

• Data classes definition

• Relational search

• Data transformation

• Mining

• Integration of information

• Interpretations



Data classes definition

molecule

cell

tissue

organism

Protein structure 

and dynamics

DNA, Protein, 

Gene Expression, 

Gene Networks 

Population



Relational Search

• Get a subset of the available data

• Define relations between categories of data

• Select by logical operations on  relations



Data Transformations

• Image analysis

• Measures on DNA sequences

• Measure on Protein sequences

• ...



Mining

Classifier

Examples : DNA assembling, Protein and DNA homology, DNA philogeny, 

genes characterizations of tissue, time pattern similarity 



Mining

• Attribute Space

x1

x2

x=(x1,x2)



Mining

• Clustering

x1

x2

x1

x2



Mining

x1

x2

x1

x2

• Classification



Mining

• Attribute Space Dimension

x1

x2



Mining
Dynamical System

Examples : gene networks, protein structure, cells, organisms, populations, drug 

reaction
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Mining



Integration of Information

• different resolutions data classes

• transformed data

• selected data

• mined data



Interpretation

• Integrated information

• Known concepts

• Propose hypothesis

• confirm or negate hypothesis



A system for genetic data 

analysis

• Database

• Analytical procedures

• Data mining 

• High performance computing



System

P1

P2

Pn

Pi : analytical and mining procedures (kernel parallel)

Objected oriented database



System Architecture
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Data Warehouse

M_database
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Applications

• Cancer tissue characterization

• Cell cycle simulation

• Inference from clustering

• Gene regulation



Cancer tissue characterization

• Problem: from a small set (20) of 

microarrays, find a minimum number of 

genes that are enough to separate cancer A 

and B.
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• Approach: randomize data, compute 

classifier using genes subsets, measure error 

for different dispersions, choose the subset 

that balance small error and high dispersion. 

A supercomputer is required.



rk

• Linear classifier

• Dispersion centered in the sample

• Flat round dispersion model

• Error computed analytically (faster)

h
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• Robustness analysis

rj

rk
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• Cell cycle simulation

External Signal

Receptors

Ingredients Control

p53

Division Steps

Excitation

Excitation or Inhibition

Inhibition



Inference from clustering

• Examine the precision of sample-based 

clustering relative to population inference

• Compare the number of replicates of 

microarray experiments

• Compare the various clustering methods
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Time Course Model

Class 1

[low variance]

measurement

Class 2

[high variance]

measurement



Clustering algorithms

• K-means

• Fuzzy c-means

• Self Organizing Map

• Hierarchical (dendrogram)



Clustering errors

• How clustering errors change as the number 

of replicates increases?

• How differently each clustering algorithm 

perform?



K-means
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Fuzzy c-means
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Self Organizing Maps
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Variances of Data x Replicates

• The number of replicates required to get a 

reasonable clustering result varies, 

depending on the variance of gene 

expression levels

• Clustering algorithm must also be chosen 

correspondingly to get the best clustering 

algorithm.  No universal clustering 

algorithm!



No replicate
variance = 0.25

misclassifications

Tighter clusters due 
to small variance

Results from Fuzzy c-means



No replicate
variance = 1.0

many
misclassifications

clusters start mixing



No replicate
variance = 2.0

LOTS OF
misclassifications

Looser clusters due 
to large variance



5 replicates
variance = 0.25

NO
misclassifications

Much tighter clusters 
due to the replications



5 replicates
variance = 1.0

Very few
misclassifications

Clusters well 
separated due to 
the replications 
and relatively 
small variance



5 replicates
variance = 2.0

Very few
misclassifications

Clusters tightened due 
to the replications



Real Data Application

• Initial clustering to generate templates

– means

– variance 

• Simulate time course data based on the 

templates generated by initial clustering

– different number of replicates

• Apply various clustering methods

– expected clustering error for each method



5 templates by HC
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Clustering errors on HC 
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5 templates by FCM
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Clustering errors on FCM 
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Gene Regulation

• Problem: find the architecture of a gene 

regulation network from microarray data.

• Approach: choose small subsets of genes (2, 

3 or 4), design classifier, compute the 

empirical error, choose the minimum error 

classifier. A supercomputer is required.



Target Gene Predictor 1

Predictor 2

NMSE 1NMSE 2

Predictor 3

NMSE 3

Gene Regulation



Gene Regulation

x1 x2 p(-1,x1,x2) p(0,x1,x2) p(1,x1,x2) p(x1,x2) y Error

-1 -1 0.05 0.1 0.05 0.2 0 0.1

-1 0 0.03 0.03 0.04 0.1 1 0.06

-1 1 0.02 0.01 0.07 0.1 1 0.03

0 -1 0.01 0.01 0.03 0.05 1 0.02

0 0 0.03 0.01 0.01 0.05 -1 0.02

0 1 0.07 0.1 0.03 0.2 0 0.1

1 -1 0.04 0.06 0.1 0.2 1 0.1

1 0 0.03 0.01 0.01 0.05 -1 0.02

1 1 0.02 0.02 0.01 0.05 -1 0.03

0.48



Gene regulation
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ML-1 IR -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

ML-1 MMS 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0

Molt4 IR -1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0

Molt4 MMS 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0

SR IR -1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0

SR MMS 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0

A549 IR 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0

A549 MMS 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0

A549 UV 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1

MCF7 IR -1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0

MCF7 MMS 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0

MCF7 UV 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1

RKO IR 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0

RKO MMS 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0

RKO UV 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1

CCRF-CEM IR -1 1 1 1 1 0 1 0 0 0 0 -1 -1 0 1 0 0

CCRF-CEM MMS 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 1 0

HL60 IR -1 1 0 1 1 0 1 0 1 0 1 -1 -1 -1 1 0 0

HL60 MMS 0 0 1 0 1 0 0 0 0 1 1 -1 0 1 0 1 0

K562 IR 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0

K562 MMS 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 1 0

H1299 IR 0 0 0 1 0 0 1 0 0 0 0 -1 0 0 1 0 0

H1299 MMS 0 0 0 0 1 0 0 0 0 0 1 -1 0 1 0 1 0

H1299 UV 0 0 0 0 1 0 1 0 0 0 1 -1 0 1 0 0 1

RKO/E6 IR -1 1 0 1 0 1 1 0 0 0 0 -1 -1 0 1 0 0

RKO/E6 MMS -1 0 0 0 1 0 0 0 0 0 1 -1 -1 1 0 1 0

RKO/E6 UV -1 0 0 0 1 0 0 0 0 0 1 -1 -1 1 0 0 1

T47D IR 0 0 0 1 0 0 0 0 0 0 1 -1 0 -1 1 0 0

T47D MMS 0 0 0 0 1 0 0 0 0 0 1 -1 0 1 0 1 0

T47D UV 0 0 0 0 1 0 0 0 0 0 1 -1 0 1 0 0 1

Rows are cell lines subjected to different experimental conditions.

Comparisons are to the same cell line not exposed to the experimental treatment.

Genes Condition



Gene regulation

• split data in two parts: 2/3 and 1/3

• 2/3: training the predictor

• 1/3: empirical error measure

• create all predictors with less than 4 genes 

and measure their empirical error



Gene regulation

• repeat for 256 random splitting and take 

their mean empirical error

• choose the predictors with error less than 

75%



Gene Regulation

AHA p53

RCH1

0.4760.203

PC1

0.153

OHO RCH1

BCL3

0.9930.743

MDM2

0.723

p53 p21

MDM2

0.8050.612

0.810



Gene Regulation

• some well known paths of the graph were 

verified

• several unknown ones were suggested

• The possible new paths should be tested by 

specific biochemical experiments


