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Introduction



Gene Expression



Expression measure



Goal: find a small subset of genes 

whose expression values are enough to 

recognize two or more cancer types.



Classifiers: concept and design
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Classifier Design

Loss function

Risk (expected loss) of a function :

Design goal is to find a function

with minimum risk.

X is a random set

Y is a binary random variable



Optimal MAE function

Example :  MAE  loss function
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PAC learning

L is Probably Approximately Correct (PAC)
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Dimensionality Reduction
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Mean conditional entropy



Entropy

• Distribution measure

• H(X) = - ∑ p(x) log p(x)

• decreases when the probability mass is 

more concentrated.

• Maximum for uniform distribution

• Invariant to redistribution of the probability 

mass, keeping the same proportion



Expected Conditional Entropy

• E[H(Y/X)] = ∑ - p(x) ∑ p(Y/x) log p(Y/x)

• When E[H(Y/X)] is smaller, the pattern 

recognition problem is simpler



Finding the best features

• For each subset of features, p(x) and p(y/x) 

may be estimated from data.  The best set of 

features has the smallest estimated 

conditional entropy.

• The feature space forms a Boolean lattice, 

that can be explored exhaustively or 

partially.



Strong features: concept and 

algorithms
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BRCA1         
BRCA2/sporadic

the tumor  sample from Patient 20



randomize data

compute classifier using genes subsets

measure error for different dispersions

choose the subset that balance small error and high 

dispersion.

A supercomputer is required.

Approach



rk

Linear classifier

Dispersion centered in the sample

Flat round dispersion model

Error computed analytically (faster)

h

R

22
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error, εn(h,R)

Hyper-plane section: Vn-1
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Robustness analysis

rj

rk
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Algorithm based on linear 

programming









Steps

• The best linear classifier uses about 20-25 

genes 

• Genes used are eliminated and the best 

linear classifier is computed, more 20-25 

genes are separated

• The procedure is repeated till having about 

100 genes

• The full search is applied in the selected 

subset of genes



Validation



• Expression of chosen subsets of genes are 

measured several times in low cost 

experiments

• If the experiments reveal compact clusters 

the subset of genes chosen should be 

correct.



Classifiers


