Mathematical Modeling in Molecular Biology

Junior Barrera DCC-IME-USP/BIOINFO-USP

Layout

- Economics perspective
- Fundamentals of Molecular Biology
- Experimental techniques
- Data mining environments
- Some Biological problems
- Formalizing Biological problems
- A family of Mathematical problems
- Other areas with similar problems

Economics Perspective

- Atomic program (1930-1945)
- Space program (1960-1975)
- Genetics (1990- ...): international investment, public and private

Brazilian investment is proportionally greater than the investment of some developed countries

Fundamentals of Molecular Biology

Heredity - Mendel (1866) The phenotypes of an individual depends on genes of his parents.

Chromosome Theory - Morgan (1910) Genes were situated in chromosomes

The molecular structure of chromosomes (Watson and Crick -1953) DNA structure: the double helix Four basis: adenine(A), guanine(G), thymine(T), cytosine(C) genes are sequences of nucleotides

cut, replication and decoding

Genes control the metabolism Metabolism occurs by sequences of enzyme-catalyzed reactions. Enzymes are specified by one or more genes

Gene expression

species modification, diagnostics, drug production

Experimental techniques

Microarrays

Image Analysis

Data Mining Environments

Objected oriented database

Pi : analytical and mining procedures (kernel parallel)

Integrated Environment

System Architecture

Some Biological problems

- Modification of Sugar Cane, Eucalyptus and chickens
- Cancer diagnostics
- Drug performance against HIV and Malaria
- Understanding of the cell division cycle
- Reconstitution of nervous tissue
- Design of drugs
- Prediction of new virus

Formalizing Biological Problems

Choice of adequate clustering technique

Clustering

Clustering

Design classifier

Dimensionality Reduction

What is the minimum number of genes that is enough to distinguish two Biological states?

Filter Design

Application

Modeling Dynamical Systems

Knockout

System identification

Find the architecture of a gene regulation network from microarray data.

System dynamics simple

System identified

$$\mathbf{x}_{1}[t+1] = 1 \iff \begin{cases} \mathbf{x}_{1}[t] = 0 \\ \text{and} \\ \left[\left((\mathbf{x}_{3}[t] = 1 \text{ or } \mathbf{x}_{3}[t-1] = 1 \text{ or } \mathbf{x}_{3}[t-2] = 1 \right) \text{ and} \\ (\mathbf{x}_{4}[t] = 1 \text{ or } \mathbf{x}_{4}[t-1] = 1 \text{ or } \mathbf{x}_{4}[t-2] = 1) \right) \\ \text{or} \\ \left(\mathbf{x}_{3}[t] = \mathbf{x}_{3}[t-1] = \mathbf{x}_{3}[t-2] = \mathbf{x}_{3}[t-3] = \mathbf{x}_{3}[t-4] = 0 \text{ and} \\ \mathbf{x}_{4}[t] = \mathbf{x}_{4}[t-1] = \mathbf{x}_{4}[t-2] = \mathbf{x}_{4}[t-3] = \mathbf{x}_{4}[t-4] = 0 \right) \end{array} \right]$$

A family of Mathematical problems

Design of classifier, filter or dynamical system

The constrained estimation problem

Other areas with similar problems

- Finances
- Marketing
- Digital TV
- Petrol Industry
- Neuro Sciences