Modeling and Simulation of Regulatory Networks

Nestor Walter Trepode

Advisors: Junior Barrera Hugo Aguirre Armelin

Outline

Why Modeling and Simulation? Discrete Dynamical Systems Yeast Cell Cycle Model and Simulations ■ The p53 Network **Combined Application of Experimental** and Computational Tools Hypothesis-driven Research Discussion

Why Modeling and Simulation?

Signaling circuitry of the mammalian cell.

from THE HALLMARKS OF CANCER - Hanahan, D. and Weinberg, R.A. CELL 100, 2000 - Pp. 57-70

Choose simpler sub-systems:

Figures from REGULATION OF P53: INTRINCATE LOOPS AND DELICATE BALANCES Oren et al - Biochemical Pharmacology 64 (2002) - Pp. 865-871

Discrete Dynamical Systems

Brief Description

A Discrete Dynamical System is given by, for all discrete time $t \ge 0$

$$x(t+1) = \phi[x(t), u(t)]$$
$$y(t) = \psi[x(t), u(t)]$$

where

 ϕ : Transition Function

 ψ : Output function

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \quad u(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix} \quad y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_r(t) \end{bmatrix}$$

x(t): State vector, $x_i(t)$: State variablesu(t): Input vector, $u_j(t)$: Input variablesy(t): Output vector, $y_k(t)$: Output variables

Budding Yeast Cell Cycle Model

from THE YEAST CELL-CYCLE NETWORK IS ROBUSTLY DESIGNED Li et al PNAS - Vol. 101 - Number 14, 2004 - Pp. 4781-4786

Model Architecture and Dynamics

Each node *i* has a binary state $S_i = 1$ or $S_i = 0$

$$S_{i}(t+1) = \begin{cases} 1, & \sum_{j} a_{ij} S_{j}(t) > 0 \\ 0, & \sum_{j} a_{ij} S_{j}(t) < 0 \\ S_{i}(t), & \sum_{j} a_{ij} S_{j}(t) = 0 \end{cases}$$

Transition Function

 $a_{ij} = a_{ij}$ green arrow from *i* to *j* $a_{ij} = a_{r}$ red arrow from *i* to *j*

Self Degradation: (yellow loops)

If a node *i* with a self yellow arrow has value $S_i(t) = 1$ and its total input from t + 1 to $t = t + t_d$ is zero then $S_i(t + t_d) = 0$

Simplified Cell-Cycle Network Fig. 1 (B)

How this Model was Built

Starting Ending Description Reference node node The nuclear concentration of Cln3 is Cell size Cln3 1, 2 proportional to cell mass. When the cell is large enough, CIn3 is "activated." When the level of Cln3/Cdc28 complex is larger than a certain threshold, it triggers Cln3 SBF 1.3 G1/S transcription by activating SBF (Swi4 and Swi6). CIn3/Cdc28 complex activates MBF (Mbp1 Cln3 MBF and Swi6) by the similar mechanism to 4 SBF. SBF Cln1.2 5 SBF is the transcription factor of CLN1,2. MBF Clb5.6 MBF is the transcription factor of CLB5,6. 4

1. Mendenhall, M. D. & Hodge, A. E. (1998) Microbiol. Mol. Biol. Rev. 62, 1191-1243.

2. Cross, F. R., Archambault, V., Miller, M. & Klovstad, M. (2002) Mol. Biol. Cell 13, 52-70.

3. Cross, F. R. & Tinkelenberg, A. H. (1991) Cell 65, 875-885.

4. Koch, C., Moll, T., Neuberg, M., Ahorn, H. & Nasmyth, K. (1993) Science 261, 1551-1557.

5. Nasmyth, K. & Dirick, L. (1991) Cell 66, 995-1013.

Table 3. References to each interaction

Temporal Evolution from the Stationary G1 State

Table 2. Temporal evolution of protein states for the simplified cell-cycle network of Fig. 1B										State of the			
							Cdc20 and						Biological
Time	Cln3	MBF	SBF	Cln1,2	Cdh1	Swi5	Cdc14	Clb5,6	Sic1	Clb1,2	Mcm1/SFF	Phase	Pathway
1	1	0	0	0	1	0	0	0	1	0	0	START	S ₁
2	0	1	1	0	1	0	0	0	1	0	0	G1	S ₂
3	0	1	1	1	1	0	0	0	1	0	0	G ₁	S ₃
4	0	1	1	1	0	0	0	0	0	0	0	G ₁	S 4
5	0	1	1	1	0	0	0	1	0	0	0	S	S₅
6	0	1	1	1	0	0	0	1	0	1	1	G ₂	S ₆
7	0	0	0	1	0	0	1	1	0	1	1	Μ	S ₇
8	0	0	0	0	0	1	1	0	0	1	1	Μ	S ₈
9	0	0	0	0	0	1	1	0	1	1	1	Μ	S ₉
10	0	0	0	0	0	1	1	0	1	0	1	Μ	S ₁₀
11	0	0	0	0	1	1	1	0	1	0	0	Μ	S ₁₁
12	0	0	0	0	1	1	0	0	1	0	0	G ₁	S ₁₂
13	0	0	0	0	1	0	0	0	1	0	0	Stationary G ₁	S _{SG1}

The right column indicates the cell-cycle phases. Note that the number of time steps in each phase do not reflect its actual duration.

Dynamical trajectories of the 1764 states flowing to stationary G_1 (Total number of states: 2¹¹ = 2048)

The biological pathway (cell-cycle sequence) is colored blue

Our Simulations of this Model

CS = Cell Size checkpoint

Simplified List of the State Values of the Biological Pathway (Cell-Cycle Sequence)

Sta	te	Cln3 Mcm1	Phase	
S,		1000 1000 100	START	
S ₂		0110 1000 100	G	
S		0111 1000 100	G	
S ₄		0111 0000 000	G	
S,		0111 0001 000	S	
S		0111 0001 011	М	
S,		0001 0011 011	М	
S		0000 0110 011	м	
S,		0000 0110 111	М	
S	,	0000 0110 101	м	
S _{ii}		0000 1110 100	м	
S ₁₂		0000 1100 100	G	
S _{sc}	1	0000 1000 100	Stationary G	

CS = Cell Size checkpoint

CS = Cell Size checkpoint

Future Work on this Model:

- Extend the budding yeast cell-cycle model from binary to multilevel.
- Relax the model by introducing stochacity in the state transitions.
- Reformulate the model in terms of a Probabilistic Genetic Networks (PGN).
- Simulate and iteratively make corrections of the model.
- Simulate the Fig. 1 (A) cell-cycle network (with four checkpoints).

The p53 Network

E P53 FUNCTIONAL CIRCUIT - Shengkan Jin and Arnold J. Lo Journal of Cell Science 114, 4139-4140 (2001)

Example: A Model for p53-mediated Apoptosis

from APOPTOSIS - THE P53 NETWORK - Haupt et al. Journal of Cell Science 116, 4077-4085, 2003 Example: A Model for the Regulation of p53 (by de AKT Pathway) under Growth/Survival Conditions or Stress Signals

from APOPTOSIS - THE P53 NETWORK - Haupt et al. Journal of Cell Science 116, 4077-4085, 2003

Combined Application of Experimental and Computational Tools

FIG. 2. Analysis of genetic regulatory systems. The boxes represent activities, the ovals information sources, and the arrows information flows.

from MODELING AND SIMULATION OF GENETIC REGULATORY SYSTEMS: A LITERATURE REVIEW Hidde de Jong Journal of Computational Biology - Vol. 9 - Number 1, 2002 - Pp. 67-103

Hypothesis-driven Research

from SYSTEMS BIOLOGY: A BRIEF OVERVIEW - Hiroaki Kitano SCIENCE - Vol. 295, 2002 - Pp. 1662-1664

Discussion

- Current experimental molecular biology is producing increasing amounts of quantitative data needed to support SIMULATION-BASED RESEARCH.
- Importance of a SYSTEM-LEVEL APPROACH (identification of their STRUCTURES and DYNAMICS)
- Advances in software and computational power enable the creation and analysis of REASONABLY REALISTIC yet intricate biological models to study the STRUCTURE and FUNCTION of biological circuits.
- Computational modelling and analysis are now able to provide useful BIOLOGICAL INSIGHTS and PREDICTIONS (analysis of the cell cycle, metabolic analysis, studies of robustness, etc.)