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Introduction
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Cell

• Pathways

• Gene networks

• Protein Signals

• Protein Interactions



7

Pathway
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Transcription and translation
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Modeling Dynamical Systems
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External Signal
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Σ

Proteomics

Transcriptome
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Lattices and Operators
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Poset

• A partially ordered set (L, ≤ ) is a set L

with a partial order relation (i.e., reflexive, 

transitive and anti-symmetric) ≤ on L
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• The upper bound of X ⊆ L is the subset Y 

of elements y∈ L such that x ≤y, ∀x∈X.

• The union ∨X is the least upper bound of 

X.

X

Y

∨X
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• The lower bound of X ⊆ L is the subset Y 

of elements y∈ L such that y ≤ x, ∀x∈X.

• The intersection ∧X is the greatest lower 

bound of X.

X

Y
∧X
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• A lattice L is a poset such that ∀X ⊆ L

there exist ∧X and ∨X .
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• Lattice functions
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Intervals

• Let a, b ∈ Fun[W,L], a ≤ b iff a(x) ≤ b(x), x ∈ W

• Interval [a,b] = {u ∈ Fun[W,L]: a ≤ u ≤ b}

a

b|W| = 2
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( ) ],[1, bauuba ∈⇔=λ

0 0 0 0 0

0 0 1 1 1
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0 0 1 1 1
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[a,b]

ba ,λ

Sup-generating operator
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Kernel of ψ at y: K(ψ)(y) = {u ∈ Fun[W,L]: y ≤ ψ(u)}
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Basis of ψ at y: B(ψ) is the set of maximal

intervals contained in K(ψ)

K(ψ)(2)K(ψ)(-1) K(ψ)(0) K(ψ)(1)K(ψ)(-2)

B(ψ)(2)B(ψ)(-1) B(ψ)(0) B(ψ)(1)B(ψ)(-2)
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( ) { }{ }1))((],[:)(: , =∈∈= yBbauLyu ba ψλψ UU

K(ψ)(2)K(ψ)(-1) K(ψ)(0) K(ψ)(1)K(ψ)(-2)

ψ(-1,-1) = 1

Operator Representation
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Lattice Operator Design
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Training

• Domain: planar shapes

• concept: color RED

Red Other

80 30

15 60
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Operator Estimation

Red Other
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Optimization problem

Loss function

Error (expected loss) of a function :

Design goal is to find a function ψopt : Fun[W, L]  → L

with minimum error.

X is a random function

Y is a random variable

Er(ψ) = E[l(ψ(X),Y)]

l : L × L → ℜ +
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Estimation problem

For m > m(ε, δ)

P(X,Y), Er(ψ) and ψopt should be estimated 

from realizations of X and Y. 

The distribution P(X,Y) is unknown

)1 ,0(, ∈δε

Pr(|Er(ψ) - Er(ψopt )| < ε) > 1 - δ
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optψ

Ψ

The constrained estimation problem

Sample size

Error
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N1

Variables for a sample of size N

N2

N3

N1 <  N2 < N3

Dimension

Error
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Formalization of prior information

ψ(ψ(x))= ψ(x), ∀x ∈ L

ψ(x) ≤ x, ∀x ∈ L

x ≤ y  ⇒ ψ(x) ≤ ψ(y), ∀x, y ∈ L
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Stack filter

• Spatially translation invariant

• Spatially locally defined

• Increasing

• Commutes with threshold
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W-operators

Translation invariance 

+

local definition within W    

=

W-operators

z

W-operators are characterized by Boolean functions
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training images

Noise elimination
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test image restaured
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test image restaured
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Apertures

• Spatially translation invariant

• Spatially locally defined

• Range translation invariant

• Range locally defined
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Design of Aperture Filters

Windowing in the space and range
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Deblurring

training images
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Lattice Dynamical System (LDS) 

Identification
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Lattice Dynamical System

x, u: T → L
n 

y: T → L
m    

x[t] ∈ L
n 

y[t] ∈ L
m

x[t] = φt(x[t - N], ..., x[t], u[t - N], ..., u[t])  

y[t] = ψt(x[t - N], ..., x[t], u[t - N], ..., u[t])  

S(φt, ψt)
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Representation

The component functions φt,j and ψt,j have canonical 

morphological representations

x[t][j], y[t][j] ∈ L

x[t][j] = φt,j (x[t - N], ..., x[t], u[t - N], ..., u[t])  

y[t][j] = ψt,j(x[t - N], ..., x[t], u[t - N], ..., u[t])  
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Architecture

Graph representing the transition function components (φt,j) 

states association



49

Dynamics
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Simulation
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Equivalent System

x, u: T → L
nN            

y: T → L
mN    

x[t] ∈ L
nN      

y[t] ∈ L
mN

x[t+1] = φt(x[t], u[t])  

y[t] = ψt(x[t], u[t])  
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State Transition Graph
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φt,j ⇔⇔⇔⇔ {φxi,j :L
mN

→ L }
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System identification

u and y are random processes

Sxo(φt, ψt)(u) is an estimator of y

S

vector  of 

functions

each component 

function has a 

basis

),( ΨΦoptS

),( ΨΦS

S(ϕopt,ψopt)

S(ϕ,ψ)

S
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Cumulative Error in T steps
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Estimation of the Error
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Generalization

• The best paths estimated give a sample

φ
xi

(u) = x ⇔ φ(xi, u) = x ⇔ φ
j
(xi, u) = x[j], 

j∈[1,nN]

• φ
j
should be generalized and represented

• System constraints imply in generalization 

rules

• Learning algorithms build the basis from 

the sample and constraints
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Example of System Identification
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Ideal Est.: 100  training examples

Est.: 1500 training examplesEst.: 500  training examples
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Empirical Cumulative Error
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Modeling of Genetic Networks
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Σ
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System Complexity

• Complexity of a LDS is the number of 

possible orbits

• For systems of dimension n, the complexity 

increase with the increase of |L|

• The size of the space of LDS also increase 

with the increase of n and |L|

• Hence, n and |L| are parameters for 

adjusting the model complexity
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Independent Subsystems

• If the system architecture has more than one 

connected component, it is composed of 

independent subsystems
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Replication

• Crucial systems may be replicated for safety
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System Connections

• If the system is reduced to independent 

subsystems by fixing some arguments of φt,j

it is said weekly connected
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Operational States

operational state

transition 

states
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AB-Controlability

• Let A and B be subsets of possible states

• A LDS is AB-controlable if, for every a∈A

and   b ∈ B, there is a path in the transition 

graph from a to b.
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Robust Operational States

operational state

transition 

states
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N-Robustness

• An operational state r is N-robust if there is 

an unconditional path in the transition graph 

from every x such that d(r,x) ≤ N.
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Robust and no Robust States

r

x

d(r,x) ≤ 2
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Examples
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Division Steps

Cell Cycle Modeling
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Division Steps

Nockout
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Biological Model

• Cell cycle control by Fibroblast Growth 

Factor 2 (FGF2) and Adrenocorticotropic

Hormone (ACTH) in the Y1 adrenocortical

cell line

• FGF2 has long been considered a candidate 

for participating in cell cycle control, but its 

molecular mechanisms remain obscure
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Mitogenic response in G0/G1 cell 

cycle to FGF2:

• Rapid and transient activation of extra 

cellular signal-regulated kinases

• Transcription activation of c-fos, c-jun and 

c-myc genes

• Induction of c-Fos and c-Myc proteins and 

cyclin D1 protein

• DNA synthesis stimulation
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Anti-mitogenic response in G0/G1 

cell cycle to ACTH:

• Blocks FGF2 mitogenic response

• Keeps ERK activation and c-Fos and cyclin 

D1 induction on

• Down regulates the levels of the c-Myc 

protein 

• Down regulates the active form of Akt/PKB 

enzyme
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A model for the FGF2/ACTH influence on cell cycle
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Model Formalization
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Effect of one pulse of FGF2
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Effect of one pulse of ACTH


