Modeling of genetic networks from microarray data

Junior Barrera BIOINFO-USP

Layout

- Introduction
- Lattices and Operators
- Lattice operator design
- Lattice Dynamical System Identification
- Modeling of genetic networks
- Examples
- Conclusion

Introduction

Biological Systems

Cell

- Pathways
- Gene networks
- Protein Signals
- Protein Interactions

Pathway

di channeal		COOH - CH - (CH2)2 - COOH	
Gene	Enzyme	NH ₂	
argA ⇒	N-Acetylglutamate syn	ithase 🛉	
		Acetylglutamate	
Contrate at		COOH - CH - (CH2)2 - COOH	
		CH3-C-NH	
argB ⇒	NAcetylglutamate kin	ase O	
and the second		Acetylglutamyl phosphate	
- Marine 1		$COOH - CH - (CH_2)_2 - C - O - P$	
1.00		CH ₂ - C - NH O	
hill adulter		ô I	
argC ⇒	N-Acetylglutamylphos	phate	
Citrate dista	reductore	Acetylglutamate semialdehyde	
and the latest		$COOH = CH = (CH_2)_2 = C = H$	
noitem		CH3 - C - NH Ö	
requisite is			
argD ⇒	NAcetylomithme tran	isaminase	
all mark to		Acetylomithine	
most star		$COOH - CH - (CH_2)_3 = NH_2$	
		CH3-C-NH	
and the second		ö	

Transcription and translation

Modeling Dynamical Systems

Modeling Dynamical Systems

microarray

13

Lattices and Operators

Poset

 A partially ordered set (L, ≤) is a set L with a partial order relation (i.e., reflexive, transitive and anti-symmetric) ≤ on L

- The upper bound of $X \subseteq L$ is the subset Y of elements $y \in L$ such that $x \leq y, \forall x \in X$.
- The union VX is the least upper bound of X.

- The lower bound of $X \subseteq L$ is the subset Y of elements $y \in L$ such that $y \leq x, \forall x \in X$.
- The intersection AX is the greatest lower bound of X.

• A lattice L is a poset such that $\forall X \subseteq L$ there exist $\land X$ and $\lor X$.

• Lattice functions Ψ : Fun[W, L] $\rightarrow L$

		T		2	2
1 ()	1	2	2	2
0 -	1	1	2	2	2
-1 -	1	1	1	1	1
-2 -2	2 -	1	-1	-1	-1

-2 -1 0 1 2

Boolean

Non Boolean

Intervals

• Let $a, b \in \operatorname{Fun}[W,L], a \le b \text{ iff } a(x) \le b(x), x \in W$

• Interval $[a,b] = \{u \in \operatorname{Fun}[W,L]: a \le u \le b\}$

Sup-generating operator

$$\lambda_{a,b}(u) = 1 \Leftrightarrow u \in [a,b]$$

[a,b]

Kernel of ψ at y: $K(\psi)(y) = \{u \in Fun[W,L]: y \le \psi(u)\}$

-2 -1 0 1 2

 $K(\psi)(0)$

 $K(\psi)(1)$

 $K(\psi)(-1)$

 $K(\psi)(-2)$

 $K(\psi)(2)$ 25

Basis of ψ at y: B(ψ) is the set of maximal intervals contained in K(ψ)

Image: select	Image: Sector			
K(ψ)(-2)	K (ψ)(-1)	K (ψ)(0)	K (ψ)(1)	K(ψ)(2)
B(ψ)(-2)	$B(\psi)(-1)$	$B(\psi)(0)$	$B(\psi)(1)$	$B(\psi)(2)$

Operator Representation

$$\psi(u) = \bigcup \left\{ y \in L : \bigcup \left\{ \lambda_{a,b}(u) : [a,b] \in B(\psi)(y) \right\} = 1 \right\}$$

 $\overline{\psi(-1,-1)} = 1$

Lattice Operator Design

Training

Operator Estimation

Optimization problem

Design goal is to find a function Ψ_{opt} : Fun[*W*, *L*] \rightarrow *L* with minimum error.

Error (expected loss) of a function :

$$Er(\Psi) = \mathbb{E}[l(\Psi(X), Y)]$$

X is a random functionY is a random variable

Loss function

 $l:L\times L\to \mathcal{R}^{+}$

Estimation problem

The distribution P(X,Y) is unknown

P(X,Y), $Er(\Psi)$ and Ψ_{opt} should be estimated from realizations of *X* and *Y*.

For $m > m(\varepsilon, \delta)$

 $Pr(|Er(\psi) - Er(\psi_{opt})| < \varepsilon) > 1 - \delta$

The constrained estimation problem

Variables for a sample of size N

Formalization of prior information

$$\begin{split} \psi(\psi(x)) &= \psi(x), \ \forall x \in L \\ \psi(x) \leq x, \ \forall x \in L \\ x \leq y \implies \psi(x) \leq \psi(y), \ \forall x, y \in L \end{split}$$

Stack filter

- Spatially translation invariant
- Spatially locally defined
- Increasing
- Commutes with threshold
W-operators

Translation invariance + local definition within W = W-operators

W-operators are characterized by Boolean functions

Noise elimination

training images

test image

restaured

test image

restaured

Apertures

- Spatially translation invariant
- Spatially locally defined
- Range translation invariant
- Range locally defined

Design of Aperture Filters

Windowing in the space and range

Deblurring

training images

Lattice Dynamical System (LDS) Identification

Lattice Dynamical System

 $\mathbf{x}, \mathbf{u}: \mathbf{T} \to \mathbf{L}^{n}$ $\mathbf{y}: \mathbf{T} \to \mathbf{L}^{m}$ $\mathbf{x}[\mathbf{t}] \in \mathbf{L}^{n}$ $\mathbf{y}[\mathbf{t}] \in \mathbf{L}^{m}$

 $\mathbf{x}[t] = \phi_t(\mathbf{x}[t - N], ..., \mathbf{x}[t], \mathbf{u}[t - N], ..., \mathbf{u}[t])$

 $\mathbf{y}[t] = \psi_t(\mathbf{x}[t - N], ..., \mathbf{x}[t], \mathbf{u}[t - N], ..., \mathbf{u}[t])$

 $S(\phi_t, \psi_t)$

Representation

 $x[t][j], y[t][j] \in L$

 $\mathbf{x}[t][j] = \phi_{t,j}(\mathbf{x}[t - N], ..., \mathbf{x}[t], \mathbf{u}[t - N], ..., \mathbf{u}[t])$

 $\mathbf{y}[t][j] = \psi_{t,j}(\mathbf{x}[t - N], ..., \mathbf{x}[t], \mathbf{u}[t - N], ..., \mathbf{u}[t])$

The component functions $\phi_{t,j}$ and $\psi_{t,j}$ have canonical morphological representations

Architecture

Graph representing the transition function components $(\phi_{t,j})$ states association

Dynamics

$$\mathbf{x}_{1}[t+1] = 1 \iff \begin{cases} \mathbf{x}_{1}[t] = 0 \\ \text{and} \\ \left[\left((\mathbf{x}_{3}[t] = 1 \text{ or } \mathbf{x}_{3}[t-1] = 1 \text{ or } \mathbf{x}_{3}[t-2] = 1 \right) \text{ and} \\ (\mathbf{x}_{4}[t] = 1 \text{ or } \mathbf{x}_{4}[t-1] = 1 \text{ or } \mathbf{x}_{4}[t-2] = 1) \right) \\ \text{or} \\ \left(\mathbf{x}_{3}[t] = \mathbf{x}_{3}[t-1] = \mathbf{x}_{3}[t-2] = \mathbf{x}_{3}[t-3] = \mathbf{x}_{3}[t-4] = 0 \text{ and} \\ \mathbf{x}_{4}[t] = \mathbf{x}_{4}[t-1] = \mathbf{x}_{4}[t-2] = \mathbf{x}_{4}[t-3] = \mathbf{x}_{4}[t-4] = 0 \right) \end{array} \right]$$

Simulation

Equivalent System

x, **u**: $T \to L^{nN}$ **y**: $T \to L^{mN}$ **x**[t] $\in L^{nN}$ **y**[t] $\in L^{mN}$

 $\mathbf{x}[t+1] = \phi_t(\mathbf{x}[t], \mathbf{u}[t])$

 $\mathbf{y}[t] = \mathbf{\psi}_t(\mathbf{x}[t], \mathbf{u}[t])$

State Transition Graph

 $\phi_{t} \Leftrightarrow \{\phi_{xi} : L^{mN} \to L^{nN} \}$ $\phi_{x1}(\mathbf{u}_{1}) = \mathbf{x}_{2}$ $\phi_{t,j} \Leftrightarrow \{\phi_{xi,j} : L^{mN} \to L \}$

System identification

u and **y are random processes**

Cumulative Error in T steps

Estimation of the Error

Generalization

- The best paths estimated give a sample $\phi_{xi}(\mathbf{u}) = \mathbf{x} \Leftrightarrow \phi(\mathbf{x}i, \mathbf{u}) = \mathbf{x} \Leftrightarrow \phi_j(\mathbf{x}i, \mathbf{u}) = \mathbf{x}[j],$ $j \in [1, nN]$
- ϕ_i should be generalized and represented
- System constraints imply in generalization rules
- Learning algorithms build the basis from the sample and constraints

Example of System Identification

Est.: 500 training examples

Est.: 100 training examples

Est.: 1500 training examples

Empirical Cumulative Error

59

Modeling of Genetic Networks

System Complexity

- Complexity of a LDS is the number of possible orbits
- For systems of dimension n, the complexity increase with the increase of L
- The size of the space of LDS also increase with the increase of n and |L|
- Hence, n and |L| are parameters for adjusting the model complexity

Independent Subsystems

• If the system architecture has more than one connected component, it is composed of independent subsystems

Replication

• Crucial systems may be replicated for safety

System Connections

• If the system is reduced to independent subsystems by fixing some arguments of $\phi_{t,j}$ it is said weekly connected

Operational States

AB-Controlability

- Let A and B be subsets of possible states
- A LDS is AB-controlable if, for every a∈ A and b∈ B, there is a path in the transition graph from a to b.

Robust Operational States

N-Robustness

• An operational state r is N-robust if there is an unconditional path in the transition graph from every x such that $d(r,x) \leq N$.

Robust and no Robust States

Examples

Cell Cycle Modeling

Nockout

SYSTEM BEHAVIOUR WITH FP = Period 3 Oscilator

SYSTEM BEHAVIOUR WITH FP = Period 3 Oscilator AND w1 KNOCK OUT

SYSTEM BEHAVIOUR WITH FP = Period 2 Oscilator

SYSTEM BEHAVIOUR WITH FP = Period 2 Oscilator AND w1 KNOCK OUT

Biological Model

- Cell cycle control by Fibroblast Growth Factor 2 (FGF2) and Adrenocorticotropic Hormone (ACTH) in the Y1 adrenocortical cell line
- FGF2 has long been considered a candidate for participating in cell cycle control, but its molecular mechanisms remain obscure

Mitogenic response in G0/G1 cell cycle to FGF2:

- Rapid and transient activation of extra cellular signal-regulated kinases
- Transcription activation of c-fos, c-jun and c-myc genes
- Induction of c-Fos and c-Myc proteins and cyclin D1 protein
- DNA synthesis stimulation

Anti-mitogenic response in G0/G1 cell cycle to ACTH:

- Blocks FGF2 mitogenic response
- Keeps ERK activation and c-Fos and cyclin D1 induction on
- Down regulates the levels of the c-Myc protein
- Down regulates the active form of Akt/PKB enzyme

A model for the FGF2/ACTH influence on cell cycle

Model Formalization

Element	Rule
$\mathrm{FGF2R}[i]$	receives external signal
$\operatorname{ACTHR}[i]$	receives external signal
$\mathrm{ERK1/2[}i]$	$\operatorname{FGF2R[i-1]} \cdot \operatorname{\overline{anti-ERK[i-1]}}$
PI3K[i]	$FGF2R[i-1] \cdot anti-PI3K[i-1]$
PKA[i]	$ACTHR[i-1] \cdot anti-PKA[i-1]$
$\operatorname{Akt}[i]$	$(PI3K[i-2] + PI3K[i-1]) \cdot \overline{PKA[i-2]} \cdot \overline{PKA[i-1]}$
c-fos[i]	ERK1/2[i-3] + ERK1/2[i-2] + PKA[i-3] + PKA[i-2]
c-jun[i]	$\mathrm{ERK1/2[i-3]} + \mathrm{ERK1/2[i-2]} + \mathrm{PKA[i-3]} + \mathrm{PKA[i-2]}$
c-myc[<i>i</i>]	$\overline{\mathrm{PKA}[i-2]} \cdot \overline{\mathrm{PKA}[i-1]} \cdot (\mathrm{ERK1}/2[i-3] + \mathrm{ERK1}/2[i-2])$
D1[<i>i</i>]	$\operatorname{c-fos}[i-1] \cdot \operatorname{c-jun}[i-1] \cdot (\operatorname{PI3K}[i-4] - \operatorname{PI3K}[i-3])$
Id2[i]	$\operatorname{c-myc}[i-1]$
p27kip1[i]	$\overline{\operatorname{Akt}[i-2]}$
CDK[i]	$D1[i-1] \cdot \overline{p27 \text{kip1}[i-1]}$
$\operatorname{Rb}[i]$	$\operatorname{CDK}[i-1] \cdot \operatorname{Id2}[i-2]$

Effect of one pulse of FGF2

Effect of one pulse of ACTH

