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Sequential Switching Circuits



Mathematical Morphology

• studies operators between complete lattices, 

what includes switching functions

• lattice operators are decomposed in terms of 

simple morphological operators: erosion, 

dilation, anti-erosion, anti-dilation

• Any lattice operator can be decomposed in a 

canonical  morphological representation



Lattice Dynamical Systems

• We present the notion of Lattice Dynamical 

System (LDS)

• Give a representation for LDSs, based on 

canonical morphological representations

• Formalize the problem of statistical 

identification of LDSs, 



Operator Representation
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ψ : Fun[W, L]  → L



Intervals

• Let a, b ∈ Fun[W,L], a ≤ b iff a(x) ≤ b(x), x ∈ W

• Interval [a,b] = {u ∈ Fun[W,L]: a ≤ u ≤ b}

a

b|W| = 2



• Sup-generating operator: ( ) ],[1, bauuba ∈⇔=λ
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Binary Sup-generating



Kernel of ψ at y: K(ψ)(y) = {u ∈ Fun[W,L]: y ≤ ψ(u)}
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Basis of ψ at y: B(ψ) is the set of maximal intervals contained in K(ψ)

K(ψ)(2)K(ψ)(-1) K(ψ)(0) K(ψ)(1)K(ψ)(-2)

B(ψ)(2)B(ψ)(-1) B(ψ)(0) B(ψ)(1)B(ψ)(-2)

Basis



Canonical Representation
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Operator Design



Optimization problem

Loss function

Error (expected loss) of a function :

Design goal is to find a function ψopt : Fun[W, L]  → L

with minimum error.

X is a random function

Y is a random variable

Er(ψ) = E[l(ψ(X),Y)]

l : L × L → ℜ +



Estimation problem

For

P(X,Y), Er(ψ) and ψopt should be estimated 

from realizations of X and Y. 

The distribution P(X,Y) is unknown

),( δεmm >

)1 ,0(, ∈δε

examples 

Pr(|Er(ψ) - Er(ψopt )| < ε) > 1 - δ



optψ
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The constrained estimation problem

Sample size

Error



Stack filter

• Spatially translation invariant

• Spatially locally defined

• Increasing

• Commutes with threshold



training images

Noise elimination



test image iteration 1



test image iteration 5



test image iteration 1



test image iteration 5



Apertures

• Spatially translation invariant

• Spatially locally defined

• Range translation invariant

• Range locally defined



Deblurring

training images





Resolution Enhancement
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Original Aperture: 3x3x21x51

Linear Bilinear



Original Aperture: 3x3x21x51

Linear Bilinear

Zoom



Independent Constraints

Constraints

Restriction of 

the operators space

K(ψψψψopt) ∈∈∈∈ Q ⊆⊆⊆⊆ P(P(W))

P(P(W))

Q

K(ψψψψopt)

Independent Constraint 

Let be   A,B ⊆⊆⊆⊆ P(W)   with A⊆⊆⊆⊆B:

hψψψψ(x)=1 ∀∀∀∀ x∈∈∈∈A & hψψψψ(x)=0∀∀∀∀x∉∉∉∉B, 

∀ψ∀ψ∀ψ∀ψ :K(ψψψψ) ∈∈∈∈Q
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P(W)

{1}

{0,1}

{0}
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Independent Constraints

Proposition: if Q is an independent restriction then  exist a par of operators

(αααα,ββββ) such that, for any ψ∈Ψψ∈Ψψ∈Ψψ∈ΨW

K(ψψψψ) ∈∈∈∈Q ⇔⇔⇔⇔ α≤α≤α≤α≤ ψψψψ ≤β≤β≤β≤β

where  K(αααα) = A and   K(ββββ) = B

• All independent constraint is characterized by two operators αααα and ββββ

• The pair (αααα,ββββ) is called “Envelope”

A

B

P(W)

{1}

{0}

{0}

A

B

P(W)

{1}

{1}

{0}

hαααα hββββ



Noise 

Addition

Ground 

Image

Noisy Image Filtered 

Image

Edge 

DetectedRestoration
Edge 

Detection

Edge Detected

Direct Edge Detection

Noise Edge DetectionNoise Edge Detection



Machine design of 

the restoration

Human-Machine 

design of the 

restoration

0.28 % 0.13 %
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Restoration a) Machine design of the restoration

b) Human-machine design of the restoration

ψψψψpac designed by examples

ψψψψcon = (ψψψψpac ∩β∩β∩β∩β) ∪∪∪∪ αααα

αααα = δδδδB⊕⊕⊕⊕BεεεεB⊕⊕⊕⊕BδδδδBεεεεB and ββββ = εεεε B⊕⊕⊕⊕BδδδδB⊕⊕⊕⊕B εεεε BδδδδB

αααα and ββββ are alternating sequential filters with 

P[ αααα(S) ≤≤≤≤ I ≤≤≤≤ ββββ(S) ] ≈≈≈≈ 1

B is the 3x3 square



Edge 

Detection

a) Machine design over noisy images

b) Human design after restoration

ζζζζ pac designed by examples from noisy images

ζζζζ = Id - εεεεB

B is the 3x3 square

c) Machine design after restoration

ζζζζ pac designed by examples from restored images

Noise Edge DetectionNoise Edge Detection

Machine 

design over 

noisy images

Human 

design after 

restoration

Machine 

design  after 

restoration
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Machine design over 

noisy images

Error = 0.65%

Human design after 

restoration

Error = 0.27%

Machine design  after 

restoration

Error = 0.24%

Noise Edge DetectionNoise Edge Detection



Multiresolution Constraint
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w1 w2 2 variables

4 variables
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W0

W1

D1 = P(W1)

D0 = P(W0)

zi = pi(xi1, ... , xi9)  , z = p(x)  , p=(p1, .. p9)

Let φ:D1→{0,1} , it defines the operator Ψφ on Do by

Ψφ (x) = φ(p(x))

The operador Ψφ is constrained by resolution to D1

Equivalence classes defined 

by                         

p(x) = p(y)

D0

Multiresolution Constraint



W2

W1

W0

D2 = P(W2),  D1 = P(W1), D0 = P(W0) 

x ∈D0, z ∈D1, v ∈D2, 

zi = pi(xi,1, ... , xi,9)  , z = p(x)  , 

p=(p1, .. p81)

vi = wi(xi,1, ... , xi,81)  , v = w(x)  , 

w=(w1, .. w9)

The equivalence classes defined by
p may be different by the ones 
defined by w.

p

w

Multiresolution Constraint









image noise image + noise

Multiresolution Noise



3x3 window

Pyramid

Restauration Persisting noise





Dynamical Systems



Finite Lattice Dinamical System



Representation

The component functions have canonical morphological 

representations



System: input-output



Filter

For example, processing of motion images.



Input-free systems



Causal systems



Time translation invariant systems



Causal, time translation invariant



A simulator for chain dynamical 

systems



Simulator Architecture



Functions Representation



System Description



• Cell cycle simulation

External Signal

Receptors

Ingredients Control

p53

Division Steps

Excitation

Excitation or Inhibition

Inhibition













A model for system identification
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System Error



Stationary Conditions



Component Error



Additive Loss Function



Independence Condition

• Under additive loss function optimize the 

system error is equivalent to optimize the 

system components error

• The problem of system identification is 

reduced to a family of problems of lattice 

operator design.



Identification of  Dynamical 

Systems



A Boolean System



System simulation



System identification: system 

error



System identification: transition 

error



Ideal Est.: 100  training examples

Est.: 1500  training examplesEst.: 500  training examples



Motion Segmentation



Mask Predictor result



Filtering Color Composition



Watershed Color Composition



Motion Segmentation



Motion Segmentation



Conclusion



• Presented the notion of Lattice Dynamical 

System

• Proposed a model for LDS identification

• Under additive condition, system 

identification reduces to a family of 

problems of lattice operator design

• Some examples were presented

• This perspective unifies theories such as 

switching theory, discrete automatic control

and reinforcement learning.


