Identification of Finite Lattice Dynamical Systems

Junior Barrera

BIOINFO-USP

University of São Paulo, Brazil

Outline

- Introduction
- Lattice operator representation
- Lattice operator design
- Lattice dynamical systems (LDS)
- A simulator for chain dynamical systems
- LDS identification
- System identification examples
- Conclusion

Introduction

Dynamical Systems

Sequential Switching Circuits

$$
\begin{aligned}
& \phi_{1}(\mathbf{x}[i-5], \mathbf{x}[i-4], \mathbf{x}[i-3], \mathbf{x}[i-2], \mathbf{x}[i-1], \mathbf{x}[i])=\bar{x}_{1}[i-3] \cdot \bar{x}_{1}[i-2] \cdot \bar{x}_{1}[i-1] \cdot \bar{x}_{2}[i-5] \cdot \bar{x}_{2}[i-3] \cdot \bar{x}_{2}[i-1] \\
& \phi_{2}(\mathbf{x}[i-5], \mathbf{x}[i-4], \mathbf{x}[i-3], \mathbf{x}[i-2], \mathbf{x}[i-1], \mathbf{x}[i])=\bar{x}_{1}[i-4] \cdot \bar{x}_{2}[i-5] \cdot \bar{x}_{2}[i-4] \cdot \bar{x}_{2}[i-3] \cdot \bar{x}_{2}[i-2] \cdot \bar{x}_{2}[i-1]
\end{aligned}
$$

Mathematical Morphology

- studies operators between complete lattices, what includes switching functions
- lattice operators are decomposed in terms of simple morphological operators: erosion, dilation, anti-erosion, anti-dilation
- Any lattice operator can be decomposed in a canonical morphological representation

Lattice Dynamical Systems

- We present the notion of Lattice Dynamical System (LDS)
- Give a representation for LDSs, based on canonical morphological representations
- Formalize the problem of statistical identification of LDSs,

Operator Representation

$$
\psi: \operatorname{Fun}[W, L] \rightarrow L
$$

2	0	1	2	2	2
1	0	1	2	2	2
0	-1	1	2	2	2
-1	-1	1	1	1	1
-2	-2	-1	-1	-1	-1

Intervals

- Let $a, b \in \operatorname{Fun}[W, L], a \leq b$ iff $a(x) \leq b(x), x \in W$

$$
|\mathrm{W}|=2
$$

- Interval $[a, b]=\{u \in \operatorname{Fun}[W, L]: a \leq u \leq b\}$

Binary Sup-generating

- Sup-generating operator: $\lambda_{a, b}(u)=1 \Leftrightarrow u \in[a, b]$

0	0	0	0	0
0	0	1	1	1
0	0	1	1	1
0	0	1	1	1
0	0	0	0	0

[a,b]

$$
\lambda_{a, b}
$$

Kernel

Kernel of ψ at $y: \mathrm{K}(\psi)(y)=\{u \in \operatorname{Fun}[W, L]: y \leq \psi(u)\}$

2	0	1	2	2	2
1	0	1	2	2	2
0	-1	1	2	2	2
-1	-1	1	1	1	1
-2	-2	-1	-1	-1	-1
	-2	-1	0	1	2

$\mathrm{K}(\psi)(-2)$

$K(\psi)(-1)$

$\mathrm{K}(\psi)(0)$

$\mathrm{K}(\psi)(1)$

$\mathrm{K}(\psi)(2)$

Basis

Basis of ψ at $y: \mathrm{B}(\psi)$ is the set of maximal intervals contained in $\mathrm{K}(\psi)$

$\mathrm{K}(\psi)(-2)$

$\mathrm{B}(\psi)(-2)$

$\mathrm{K}(\psi)(-1)$

$\mathrm{B}(\psi)(-1)$

$K(\psi)(0)$

B($\psi(0)$
$\mathrm{K}(\psi)(1)$

B(ψ)(1)

$\mathrm{K}(\psi)(2)$

B(ψ)(2)

Canonical Representation

$$
\psi(u)=\bigcup\left\{y \in M: \cup\left\{\lambda_{a, b}(u):[a, b] \in B(\psi)(y)\right\}=1\right\}
$$

$K(\psi)(-2)$

$K(\psi)(-1)$

$K(\psi)(0)$

$\mathrm{K}(\psi)(1)$
$\mathrm{K}(\psi)(2)$

$$
\boldsymbol{\psi}(-1,-1)=1
$$

Operator Design

Optimization problem

\Rightarrow Design goal is to find a function $\psi_{\text {opt }}: \operatorname{Fun}[W, L] \rightarrow L$ with minimum error.
\Rightarrow Error (expected loss) of a function :

$$
\operatorname{Er}(\psi)=\mathrm{E}[((\psi(X), Y)]
$$

\Rightarrow Loss function

$$
l: L \times L \rightarrow \mathfrak{R}^{+}
$$

Estimation problem

\Rightarrow The distribution $P(X, Y)$ is unknown
$\Rightarrow P(X, Y), E r(\psi)$ and $\psi_{\text {opt }}$ should be estimated from realizations of X and Y.
\Rightarrow For $m>m(\varepsilon, \boldsymbol{\delta})$ examples

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|E r(\psi)-E r\left(\psi_{\text {opt }}\right)\right|<\varepsilon\right)>1-\delta \\
& \varepsilon, \delta \in(0,1)
\end{aligned}
$$

The constrained estimation problem

Stack filter

- Spatially translation invariant
- Spatially locally defined
- Increasing
- Commutes with threshold

Noise elimination

training images

Apertures

- Spatially translation invariant
- Spatially locally defined
- Range translation invariant
- Range locally defined

Deblurring

training images

Resolution Enhancement

Original

Linear

Aperture: $3 \times 3 \times 21 \times 51$

Bilinear

Zoom

Original

Aperture: $3 \times 3 \times 21 \times 51$

Linear

Bilinear

Independent Constraints

Constraints

Restriction of
the operators space
$\mathbf{K}\left(\Psi_{\text {opt }}\right) \in \mathbf{Q} \subseteq P(P(\mathbf{W}))$

Independent Constraint

Let be $A, B \subseteq P(W)$ with $A \subseteq B$:
$\mathbf{h}_{\psi}(\mathbf{x})=\mathbf{1} \forall \mathbf{x} \in A \quad \& \quad \mathbf{h}_{\psi}(\mathbf{x})=\mathbf{0} \forall \mathbf{x} \notin B$, $\forall \psi: \mathbf{K}(\psi) \in \mathbf{Q}$

Independent Constraints

Proposition: if \mathbf{Q} is an independent restriction then exist a par of operators (α, β) such that, for any $\psi \in \Psi_{W}$

$$
\mathbf{K}(\psi) \in \mathbf{Q} \Leftrightarrow \alpha \leq \psi \leq \beta
$$

where $K(\alpha)=A$ and $K(\beta)=B$

- All independent constraint is characterized by two operators α and β
- The pair (α, β) is called "Envelope"

Noise Edge Detection

Restoration \longrightarrow a) Machine design of the restoration

$\Psi_{\text {pac }}$ designed by examples
b) Human-machine design of the restoration

$$
\begin{aligned}
& \Psi_{\mathrm{con}}=\left(\Psi_{\mathrm{pac}} \cap \beta\right) \cup \alpha \\
& \alpha=\delta_{\mathrm{B} \oplus \mathrm{~B}} \varepsilon_{\mathrm{B} \oplus \mathrm{~B}} \delta_{\mathrm{B}} \varepsilon_{\mathrm{B}} \quad \text { and } \quad \beta=\varepsilon_{\mathrm{B} \oplus \mathrm{~B}} \delta_{\mathrm{B} \oplus \mathrm{~B}} \varepsilon_{\mathrm{B}} \delta_{\mathrm{B}}
\end{aligned}
$$

α and β are alternating sequential filters with
$\mathbf{P}[\alpha(S) \leq \mathrm{I} \leq \beta(S)] \approx 1$
B is the 3×3 square

Machine design of the restoration	Human-Machine design of the restoration
0.28%	0.13%

Noise Edge Detection

Edge Detection	a) Machine design over noisy images ζ_{pac} designed by examples from noisy images b) Human design after restoration $\zeta=\mathbf{I}_{\mathrm{d}}-\varepsilon_{\mathrm{B}}$ B is the 3×3 square c) Machine design after restoration $\zeta_{\text {pac }}$ designed by examples from restored images

Machine design over noisy images	Human design after restoration	Machine design after restoration
$\mathbf{0 . 6 5 \%}$	$\mathbf{0 . 2 7 \%}$	$\mathbf{0 . 2 4 \%}$

Noise Edge Detection

Multiresolution Constraint

2 variables: $\mathbf{2}^{\mathbf{2}}=\mathbf{4}$

4 variables: $\mathbf{2 4}^{\mathbf{4}=\mathbf{1 6}}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}$

$\mathbf{8}$ variables: $\mathbf{2}^{\mathbf{8}}=\mathbf{2 5 6}$

Multiresolution Constraint

$$
\begin{aligned}
& \mathrm{D}_{1}=P\left(\mathrm{~W}_{1}\right) \\
& \mathrm{D}_{0}=P\left(\mathrm{~W}_{0}\right) \\
& \mathbf{z}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}\left(\mathbf{x}_{\mathrm{i} 1}, \ldots, \mathbf{x}_{\mathrm{i} 9}\right), \mathbf{z}=\mathrm{p}(\mathbf{x}), \mathrm{p}=\left(\mathrm{p}_{1}, . . \mathrm{p}_{9}\right)
\end{aligned}
$$

Let $\phi: \mathrm{D}_{1} \rightarrow\{0,1\}$, it defines the operator Ψ_{ϕ} on D_{o} by
$\Psi_{\phi}(\mathbf{x})=\phi(p(\mathbf{x}))$
The operador Ψ_{ϕ} is constrained by resolution to D_{1}

Equivalence classes defined by

$$
\mathrm{p}(\mathbf{x})=\mathrm{p}(\mathbf{y})
$$

Multiresolution Constraint

Multiresolution Noise

image

Dynamical Systems

Finite Lattice Dinamical System

$$
\begin{array}{lll}
\mathbf{x}: T \rightarrow \mathcal{L}^{n} & \mathbf{y}: T \rightarrow \mathcal{L}^{m} & \mathbf{x}[t] \in \mathcal{L}^{n} \\
\mathbf{u}: T \rightarrow \mathcal{L}^{n} &
\end{array}
$$

$$
\begin{aligned}
\mathbf{x}[t+1] & =\Phi_{t}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \ldots, \mathbf{x}[t+N], \mathbf{u}[t-N], \ldots, \mathbf{u}[t], \ldots, \mathbf{u}[t+N]) \\
\mathbf{y}[t] & =\Psi_{t}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \ldots, \mathbf{x}[t+N], \mathbf{u}[t-N], \ldots, \mathbf{u}[t], \ldots, \mathbf{u}[t+N])
\end{aligned}
$$

$$
S\left(\Phi_{t}, \Psi_{t}\right)
$$

$$
\begin{aligned}
& \Phi_{t}: \mathcal{L}^{2(2 N+1) n} \rightarrow \mathcal{L}^{n} \\
& \Psi_{t}: \mathcal{L}^{2(2 N+1) n} \rightarrow \mathcal{L}^{m}
\end{aligned}
$$

Representation

$$
\begin{aligned}
\mathbf{x}_{j}[t+1] & =\phi_{t, j}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \ldots, \mathbf{x}[t+N], \mathbf{u}[t-N], \ldots, \mathbf{u}[t], \ldots, \mathbf{u}[t+N]) \\
\mathbf{y}_{k}[t] & =\psi_{t, k}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \ldots, \mathbf{x}[t+N], \mathbf{u}[t-N], \ldots, \mathbf{u}[t], \ldots, \mathbf{u}[t+N])
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{j}[t] \in \mathcal{L} \\
& \phi_{t, j}: \mathcal{L}^{2(2 N+1) n} \rightarrow \mathcal{L} \\
& \psi_{t, k}: \mathcal{L}^{2(2 N+1) n} \rightarrow \mathcal{L}
\end{aligned}
$$

The component functions have canonical morphological representations

System: input-output

$$
\begin{gathered}
\mathbf{y}[t]=S_{(\mathbf{x}[0], \ldots, \mathbf{x}[N], \ldots, \mathbf{x}[2 N])}\left(\Phi_{t}, \Psi_{t}\right)(\mathbf{u}[t-N], \ldots, \mathbf{u}[t], \ldots, \mathbf{u}[t+N]) \\
\mathbf{y}=S_{(\mathbf{x}[0], \ldots, \mathbf{x}[N], \ldots, \mathbf{x}[2 N])}\left(\Phi_{t}, \Psi_{t}\right)(\mathbf{u})
\end{gathered}
$$

Filter

$$
\begin{gathered}
\mathbf{u : T \rightarrow} \mathcal{L}^{n} \quad \mathbf{y}: T \rightarrow \mathcal{L}^{m} \\
\Gamma: \mathcal{L}^{(2 N+1) n} \rightarrow \mathcal{L}^{m} \\
\mathbf{y}[t]=\Gamma_{t}(\mathbf{u}[t-N], \ldots, \mathbf{u}[t], \ldots, \mathbf{u}[t+N])
\end{gathered}
$$

For example, processing of motion images.

Input-free systems

$$
\begin{aligned}
& \mathbf{x}[t+1]=\Phi_{t}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \ldots, \mathbf{x}[t+N]) \\
& \mathbf{y}[t]=\Psi_{t}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \ldots, \mathbf{x}[t+N])
\end{aligned}
$$

Causal systems

$$
\begin{gathered}
\mathbf{x}[t+1]=\Phi_{t}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \mathbf{u}[t-N], \ldots, \mathbf{u}[t]) \\
\mathbf{y}[t]=\Psi_{t}(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \mathbf{u}[t-N], \ldots, \mathbf{u}[t])
\end{gathered}
$$

Time translation invariant systems

$$
\begin{array}{lll}
\Phi: \mathcal{L}^{2(2 N+1) n} \rightarrow \mathcal{L}^{n} & S(\Phi, \Psi) & \Phi_{t}=\Phi \\
\Psi: \mathcal{L}^{2(2 N+1) n} \rightarrow \mathcal{L}^{m} & & \Psi_{t}=\Psi
\end{array}
$$

Causal, time translation invariant

A simulator for chain dynamical systems

Simulator Architecture

Functions Representation

System Description

```
Gene g1:{1.00 f1 g1[4] g1[3] g1[2] g1[1] g2[6] g2[5] g2[4] g2[3] g2[2] g2[1];};
Gene g2:{1.00 f2 g1[4] g1[3] g1[2] g1[1] g2[6] g2[5] g2[4] g2[3] g2[2] g2[1];};
# Function definitions
# ----------------------
def f1: [0000000000..1000101010]: 1;
def f2: [0000000000..0111100000]: 1;
# History
# --------------------------
hist g1: [0 0 0 0 0 0 0 0 0 0 0 0];
hist g2: [0 0 0 0 0 0 0 0 0 0 0 0];
end
```


- Cell cycle simulation

Oscilador de Perlodo 10: FUNCIONAMENTO GERAL (parte_B-t4A-010.sim)

Oscilador de Periodo 5: FUNCIONAMENTO GERAL (parte_B-t4A-05.sim)

Oscilador de Periodo 3: FUNCIONAMENTO GERAL (parte_B-t4A-03.sim)

Oscilador de Periodo 2: FUNCIONAMENTO GERAL (parte_B-t4A-02.sim)

Sinal Periodico 7 ligados 1desligado: FUNCIONAMENTO GERAL (parte_B-t4-08-70f8.sim)

A model for system identification

Model

System Error

$$
\begin{gathered}
\operatorname{Er}(S(\Phi, \Psi))=E\left[l\left(S_{(\mathbf{x}[0], \ldots, \mathbf{x}[N])}(\Phi, \Psi)(\mathbf{U}[t-N], \ldots, \mathbf{U}[t-1], \mathbf{U}[t]), \mathbf{I}[t]\right)\right] \\
l: \mathcal{L}^{m} \times \mathcal{L}^{m} \rightarrow \Re^{+}
\end{gathered}
$$

Stationary Conditions

$$
P(\mathbf{x}[t-N], \ldots, \mathbf{x}[t-1], \mathbf{x}[t], \mathbf{u}[t-N], \ldots, \mathbf{u}[t-1], \mathbf{u}[t], \mathbf{i}[t])=p
$$

$$
\begin{aligned}
& \operatorname{Er}(S(\Phi, \Psi))= E\left[l\left(S_{(\mathbf{X}[0], \ldots, \mathbf{x}[N])}(\Phi, \Psi)(\mathbf{U}[t-N], \ldots, \mathbf{U}[t-1], \mathbf{U}[t]), \mathbf{I}[t]\right)\right] \\
&= \sum_{(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \mathbf{u}[t-N], \ldots, \mathbf{u}[t], i[t]) \in \mathcal{L}^{2(N+1) n} \times \mathcal{L}^{m}} l\left(S_{(\mathbf{x}[t-N], \ldots, \mathbf{x}[t])}(\Phi, \Psi)(\mathbf{u}[t-N], \ldots, \mathbf{u}[t]), \mathbf{i}[t]\right) \times \\
& p(\mathbf{x}[t-N], \ldots, \mathbf{x}[t], \mathbf{u}[t-N], \ldots, \mathbf{u}[t], \mathbf{i}[t])
\end{aligned}
$$

Component Error

$$
E r_{k}[S(\Phi, \Psi)]=E\left[l_{k}\left(S_{\left(\mathbf{X}[0], \ldots, \mathbf{x}_{[N]}\right)}(\Phi, \Psi)(\mathbf{U}[t-N], \ldots, \mathbf{U}[t-1], \mathbf{U}[t])_{k}, \mathbf{I}_{k}[t]\right)\right] .
$$

$$
\iota_{k}: \mathcal{L} \times \mathcal{L} \rightarrow \Re^{+}
$$

Additive Loss Function

$$
l=\sum_{k=1}^{m} c_{k} l_{k} \quad c_{k} \in \Re^{+}
$$

$$
\operatorname{Er}(S(\Phi, \Psi))=\sum_{k=1}^{m} E r_{k}[S(\Phi, \Psi)]
$$

$$
\begin{array}{cl}
e_{M A E}(\mathbf{a}, \mathbf{b})=\sum_{k=1}^{m}\left|\mathbf{a}_{k}-\mathbf{b}_{k}\right| & e_{M A E}=\sum_{k=1}^{m} e_{k M A E} \\
\mathbf{a}, \mathbf{b} \in\{0,1\}^{m} & e_{k_{M A E}}(a, b)=|a-b|
\end{array}
$$

Independence Condition

- Under additive loss function optimize the system error is equivalent to optimize the system components error
- The problem of system identification is reduced to a family of problems of lattice operator design.

Identification of Dynamical Systems

A Boolean System

$$
\mathbf{x}_{1}[t+1]=1 \Longleftrightarrow\left\{\begin{array}{l}
\mathbf{x}_{1}[t]=0 \\
\text { and } \\
{\left[\left(\left(\mathbf{x}_{3}[t]=1 \text { or } \mathbf{x}_{3}[t-1]=1 \text { or } \mathbf{x}_{3}[t-2]=1\right)\right.\right. \text { and }} \\
\left.\left(\mathbf{x}_{4}[t]=1 \text { or } \mathbf{x}_{4}[t-1]=1 \text { or } \mathbf{x}_{4}[t-2]=1\right)\right) \\
\text { or } \\
\left(\mathbf{x}_{3}[t]=\mathbf{x}_{3}[t-1]=\mathbf{x}_{3}[t-2]=\mathbf{x}_{3}[t-3]=\mathbf{x}_{3}[t-4]=0\right. \text { and } \\
\left.\left.\mathbf{x}_{4}[t]=\mathbf{x}_{4}[t-1]=\mathbf{x}_{4}[t-2]=\mathbf{x}_{4}[t-3]=\mathbf{x}_{4}[t-4]=0\right)\right]
\end{array}\right.
$$

System simulation

System identification: system error

System identification: transition error

Est.: 1500 training examples

Motion Segmentation

Mask
Predictor result

Filtering
Color Composition

Watershed

Color Composition

Motion Segmentation

Motion Segmentation

Conclusion

- Presented the notion of Lattice Dynamical System
- Proposed a model for LDS identification
- Under additive condition, system identification reduces to a family of problems of lattice operator design
- Some examples were presented
- This perspective unifies theories such as switching theory, discrete automatic control and reinforcement learning.

