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Introduction



Dynamical Systems
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Sequential Switching Circuits



Mathematical Morphology

• studies operators between complete lattices, 

what includes switching functions

• lattice operators are decomposed in terms of 

simple morphological operators: erosion, 

dilation, anti-erosion, anti-dilation

• Any lattice operator can be decomposed in a 

canonical  morphological representation



Lattice Dynamical Systems

• We introduce the notion of Finite Lattice 

Dynamical System (FLDS)

• Give a representation for FLDSs, based on 

canonical morphological representations

• Develop a theory for statistical 

identification of FLDSs, 



Lattices



Boolean Lattice
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Function Lattice
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Operator Representation



Intervals

• Let a, b ∈ Fun[W,L], a ≤ b iff a(x) ≤ b(x), x ∈ W

• Interval [a,b] = {u ∈ Fun[W,L]: a ≤ u ≤ b}

a

b|W| = 2



• Sup-generating operator: ( ) ],[1, bauuba ∈⇔=λ
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Binary Sup-generating



Kernel of ψ at y: K(ψ)(y) = {u ∈ Fun[W,L]: y ≤ ψ(u)}
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Basis of ψ at y: B(ψ) is the set of maximal intervals contained in K(ψ)
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Basis



Canonical Representation
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Dynamical Systems



Finite Lattice Dinamical System



Representation

The component functions have canonical morphological 

representations



System: input-output



Filter

For example, processing of motion images.



Input-free systems



Causal systems



Time translation invariant systems



Causal, time translation invariant



A model for system identification
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System Error



Stationary Conditions



Component Error



Additive Loss Function



Independence Condition

• Under additive loss function optimize the 

system error is equivalent to optimize the 

system components error

• The problem of system identification is 

reduced to a family of problems of lattice 

operator design.



Identification of Boolean 

Dynamical Systems



A Boolean System



System simulation



System identification: system 

error



System identification: transition 

error



Ideal Est.: 100  training examples

Est.: 1500  training examplesEst.: 500  training examples



Conclusion



• Introduced the notion of Finite Lattice 

Dynamical System

• Proposed a model for FLDS identification

• Under additive condition, system 

identification reduces to a family of 

problems of lattice operator design

• A Boolean example was presented

• This perspective unifies theories such as 

switching theory and discrete automatic 

control


