From the Sup-Decomposition to a Sequential Decomposition

Ronaldo Fumio Hashimoto

Junior Barrera

Edward R. Dougherty

Computer Science Department
University of São Paulo - Brazil

Outline

- Introduction
- Collection of Maximal Intervals
- Minkowski Factorization Equation
- Bounds
- Fixed Right Extremity Simplification
- W-Operators
- Sup-Decomposition to Sequential Decomposition
- Conclusion

Introduction

Morphological Machine

Introduction

$$
\boldsymbol{\epsilon}_{\mathbf{A}_{1}} \vee \boldsymbol{\epsilon}_{\mathbf{A}_{\mathbf{2}}} \mathrm{V} \cdots \mathbf{V} \boldsymbol{\epsilon}_{\mathbf{A}_{\mathbf{n}}}
$$

Syntax

Interval

$A, B \in P(W): A \subseteq B$ $[A, B]=\{X \in P(W): A \subseteq X \subseteq B\}$

Collection of Intervals

$X_{w}=\left\{\left[A_{1}, B_{1}\right],\left[A_{2}, B_{2}\right], \ldots,\left[A_{n}, B_{n}\right]\right\}$

Collection of Maximal Intervals

X_{w} is a Coll. of Maximal Intervals iff

 $\forall[A, B] \in X_{w}, \nexists\left[A^{\prime}, B^{\prime}\right] \in X_{w}:$ $\left[A^{\prime}, B^{\prime}\right] \neq[A, B]$ and $[A, B] \subseteq\left[A^{\prime}, B^{\prime}\right]$.

Collection of Maximal Intervals

Let Π_{w} denote the set of all collections of maximal intervals contained in $\mathbf{P (P (W)) .}$

Collection of Maximal Intervals

Partial Order on the elements in Π_{w}

$$
\begin{gathered}
X \leq Y \Leftrightarrow \forall[A, B] \in X, \exists\left[A^{\prime}, B^{\prime}\right] \in Y: \\
{[A, B] \subseteq\left[A^{\prime}, B^{\prime}\right]}
\end{gathered}
$$

Collection of Maximal Intervals

$\left(\Pi_{w}, \leq\right)$ is a Complete Boolean Lattice

Collection of Maximal Intervals

Supremum operation: $\forall X, Y \in \Pi_{w}$

$$
X \sqcup Y=M(\cup(x) \cup \cup(\eta)
$$

ப

U

=

Collection of Maximal Intervals

 Some operations on $X_{w} \in \Pi_{w}$:$$
\left(X_{h}\right)_{w+h}=\left\{\left[A_{h}, B_{h}\right]:[A, B] \in X\right\}
$$

\vec{h}

Collection of Maximal Intervals

 Some operations on $X_{w} \in \Pi_{w}$:$$
X_{\mathrm{w}} \oplus \mathrm{C}=\sqcup\left\{\left(X_{\mathrm{h}}\right)_{\mathrm{w} \oplus \mathrm{C}}: \mathrm{h} \in \mathrm{C}\right\}
$$

$$
\vec{h} C=\{0, h\}
$$

Given $Y_{w^{\prime}} \in \Pi_{w^{\prime}}$ and $C \in P(E)$, find $W \in P(E)$ and $X_{W} \in \Pi_{w}$ such that

$$
X_{w} \oplus C^{t}=Y_{w}
$$

$\mathbf{W}=\mathbf{W}^{\prime} \ominus \mathbf{C}^{\mathbf{t}}$

$$
L_{w} \leq X_{w} \leq U_{w}
$$

Algorithm for Finding X_{w}

$\mathbf{C} \in \mathbf{P}(E) \quad \boldsymbol{Y}_{w^{\prime}} \in \Pi_{w^{\prime}} \quad \mathbf{W}=\mathbf{W}^{\prime} \boldsymbol{\theta}^{\mathbf{t}}$

Find $X_{W} \in \Pi_{W^{\prime}}$ such that $X_{w} \oplus C^{t}=Y_{w^{\prime}}$.

Algorithm Search 1:

Compute $\boldsymbol{U}_{\mathbf{w}}$ For each $L_{w} \in \Theta_{c}\left(Y_{w^{\prime}}\right)$ do For each X_{w} such that $L_{w} \leq X_{w} \leq U_{w}$ If $X_{w} \oplus \mathbf{C}^{t}=Y_{w^{\prime}}$ Output X_{w}

Fixed Right Extremity

$\mathrm{R}_{\mathrm{w}} \subseteq \Pi_{\mathrm{w}}$

$X \in \mathbb{R}_{\mathbf{w}} \Leftrightarrow$
 The right extremity of any interval in X is the window \mathbf{W}.

$$
\begin{aligned}
& x=\{[A],[B],[C]\} \in R_{w} \\
& x \\
& x
\end{aligned}
$$

Lower Bound Simplification

Property:

$\forall X_{\mathrm{w}} \in \mathrm{R}_{\mathrm{w}}$ such that $X_{\mathrm{w}} \oplus \mathrm{C}^{\mathbf{t}}=\boldsymbol{Y}_{\mathrm{w}^{\prime}}$ $\exists L_{w} \in \Phi_{C}\left(Y_{w}\right), L_{w} \leq X_{w}$ and $L_{w} \oplus C^{t}=Y_{w}$

Algorithm for Finding X_{w}

$\mathbf{C} \in \mathbf{P}(E) \quad \boldsymbol{Y}_{\mathbf{w}^{\prime}} \in \mathbb{R}_{\mathbf{w}^{\prime}} \quad \mathbf{W}=\mathbf{W}^{\prime} \Theta \mathbf{C}^{\mathrm{t}}$

Find $X_{W} \in R_{W^{\prime}}$ such that $X_{W} \oplus C^{t}=Y_{W^{\prime}}$.

Algorithm Search 2:

Compute $\boldsymbol{U}_{\mathbf{w}}$

For each $L_{w} \in \Phi_{c}\left(Y_{w}\right)$ do If $L_{w} \oplus \mathbf{C}^{\mathrm{t}}=Y_{\mathbf{w}^{\prime}}$
For each X_{w} such that $L_{w} \leq X_{w} \leq U_{w}$ If $X_{w} \oplus \mathbf{C}^{t}=Y_{w^{\prime}}$ Output X_{w}

Feasible Sets

$C \in P(E)$ is feasible ॥ $X_{w} \oplus C^{t}=\gamma_{w^{\prime}}$

 has at least one solution.
Minimal Left Extremity

$$
X_{w} \in R_{w} \quad[A] \in X_{w}
$$

[A] is minimal in $X \Leftrightarrow \forall[B] \in X_{W},|A| \leq|B|$

Minimal Left Extremity

$$
x \in \mathbb{R}_{\mathbf{w}}
$$

$[A] \in X$
$\operatorname{Min}(X)=\{[A] \in X:[A]$ is minimal in $X\}$

Minimal Left Extremity

$$
X \in \mathbb{R}_{w} \quad A \in P(E)
$$

$$
\mathrm{S}_{\mathrm{A}}(X)=\left\{\mathrm{h} \in \mathrm{E}:\left[\mathrm{A}_{-\mathrm{h}}\right] \in X\right\}
$$

Invariant

$$
A, B \in P(E)
$$

B is an invariant of A iff $B=(A \ominus B) \oplus B$

Algorithm for Finding C and X_{w}

Given $Y_{w^{\prime}} \in R_{W^{\prime}}$, find $C \in P(E)$ and $X_{W} \in R_{W^{\prime}}$ such that $X_{w} \oplus C^{t}=Y_{W^{\prime}}$.

Algorithm Search_All:

Let $[A] \in \operatorname{Min}(Y)$:
$\forall[B] \in \operatorname{Min}(Y),\left|S_{A}(Y)\right| \leq\left|S_{B}(Y)\right|$
For each $\mathrm{C} \subseteq \mathrm{S}_{\mathrm{A}}(\boldsymbol{Y})$ do
If C is an invariant of $\mathrm{S}_{\mathrm{A}}(\boldsymbol{Y})$
Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be the output of Search_2 (Y, C) For $\mathrm{i}=1$ to n output the pair ($\mathrm{C}, \boldsymbol{X}_{\mathrm{i}}$)

Operator

An operator is a mapping from $P(E)$ to $P(E)$

$$
\psi: P(E) \rightarrow P(E)
$$

Translation Invariance

\Rightarrow Translation of X by h : $X_{h}=\{x+h: x \in X\}$

Local Definition

Window : W $\subseteq \mathbf{E}$

\Rightarrow An operator is locally defined within \mathbf{W} iff

$$
h \in \psi(X) \Leftrightarrow h \in \psi\left(X \cap W_{h}\right)
$$

W-Operators

Translation invariance

$+$
 local definition within W

W-operators

Kernel

$\mathcal{K}(\psi)=\{\mathbf{X} \in \mathbf{P}(\mathbf{W}): \mathbf{0} \in \psi(\mathbf{X})\}$

$\mathcal{K}(\psi)=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$

Basis

$\mathbf{B}(\psi)=\mathbf{M}(\mathcal{K}(\psi))$

$B(\psi)=\{[A, B],[B, C],[D, C]\}$

Sup-Decomposition

$$
\psi=\mathrm{V}\left\{\lambda_{\mathrm{A}, \mathrm{~B}}:[\mathrm{A}, \mathrm{~B}] \in \mathbf{B}(\psi)\right\}
$$

$$
\begin{equation*}
\psi=\lambda_{\mathrm{A}, \mathrm{~B}} \vee \lambda_{\mathrm{B}, \mathrm{C}} \vee \lambda_{\mathrm{D}, \mathrm{C}} \tag{31}
\end{equation*}
$$

Increasing Operator

ψ is increasing $\Leftrightarrow \mathbf{B}(\psi) \in \mathbb{R}_{\mathrm{w}}$

Collection of Maximal Fixed Right Extremity Intervals

Increasing

Non-increasing

Increasing Operator

$$
\psi=v\left\{\epsilon_{\mathrm{A}}:[\mathbf{A}, \mathbf{W}] \in \mathbf{B}(\psi)\right\}
$$

$$
\begin{equation*}
\psi=\epsilon_{\mathrm{A}} \vee \epsilon_{\mathrm{B}} \vee \epsilon_{\mathrm{C}} \tag{33}
\end{equation*}
$$

Dual Operator

$v(X)=X^{\mathbf{c}} \quad$ Negation Operator

$$
\psi^{*}=v \psi v \Leftrightarrow \text { Dual Operator }
$$

Compositions of Erosions and Dilations

$$
\psi \in \Upsilon_{w}
$$

ψ can be built by compositions of erosions and dilations

$$
\psi=\epsilon_{A} \delta_{B} \epsilon_{B} \cdots \epsilon_{A} \delta_{B} \delta_{A} \epsilon_{C} \delta_{C}
$$

Compositions of Erosions and Dilations

Properties

$$
\begin{aligned}
& \psi \in \Upsilon_{w} \Rightarrow \psi \text { is increasing } \\
& \psi \in \Upsilon_{w} \Leftrightarrow \psi^{*} \in \Upsilon_{w}
\end{aligned}
$$

Transformation

$$
\begin{aligned}
& \psi=\delta_{\mathrm{c}} \varphi \Leftrightarrow \mathbf{B}(\psi)=\mathbf{B}(\varphi) \oplus \mathbf{C}^{\mathrm{t}} \\
& \psi=\epsilon_{\mathrm{c}^{\mathrm{t}} \varphi} \varphi \mathbf{B}\left(\psi^{*}\right)=\mathbf{B}\left(\varphi^{*}\right) \oplus \mathbf{C}^{\mathrm{t}}
\end{aligned}
$$

Transformation

$$
\psi \in \Upsilon_{w}
$$

If (\mathbf{C}, X) is an Output of Search_All $(\mathbf{B}(\psi))$

$$
\Rightarrow \psi=\delta_{c} \varphi, \varphi \in \Upsilon_{w}, \mathbf{B}(\varphi)=\boldsymbol{x}
$$

If (D, X) is an Output of Search_All $\left(B\left(\psi^{*}\right)\right)$

$$
\Rightarrow \psi=\epsilon_{D^{t}} \varphi, \varphi \in \Upsilon_{w}, B\left(\varphi^{*}\right)=X
$$

Representation Tree

Example of Application

$\psi \in \Upsilon_{w}$ $\boldsymbol{Y}=\mathbf{B}(\psi)$

Representation Tree

- $Y_{1}=Y$

$$
\begin{aligned}
& W=W_{1}=11 \underline{111} \\
& \mathbf{Y}_{1}=\mathbf{Y}=\{[00 \underline{1} 01],[10 \underline{100}],[01 \underline{000}],[00 \underline{0} 10]\}
\end{aligned}
$$

$\psi=\epsilon_{\mathrm{P}} \vee \epsilon_{\mathrm{Q}} \vee \epsilon_{\mathrm{R}} \vee \boldsymbol{\epsilon}_{\mathrm{S}}$
(a)

Example of Application

Representation Tree

$$
\begin{aligned}
\delta_{C_{1}} & Y_{1}=Y \\
\bullet Y_{2} & =X_{1}
\end{aligned}
$$

$W=W_{1}=11 \underline{111}$
$\mathbf{Y}_{1}=\mathbf{Y}=\{[00101],[10 \underline{100}],[01 \underline{0} 00],[00 \underline{0} 10]\}$
$\mathbf{Y}_{1}^{*}=\mathbf{Y}^{*}=\{[11 \underline{011}],[01 \underline{110}]\}$
Output of SEARch_All (\mathbf{Y}_{1}):

$$
\begin{aligned}
& C_{1}=10 \underline{1} \\
& \mathbf{Y}_{2}=\mathbf{X}_{1}=\{[101],[010]\} \\
& W_{2}=W \ominus C_{1}^{t}=11 \underline{1}
\end{aligned}
$$

Output of SEARCh_All (\mathbf{Y}_{1}^{*}):
\emptyset.
(b)

Example of Application

Representation Tree

$$
\begin{aligned}
& \delta_{C_{1}} \stackrel{Y_{1}}{ }=Y \\
& \varepsilon_{C_{2}^{t}}^{t} \bullet Y_{2}=X_{1} \\
& \bullet Y_{3}=X_{2}^{*}
\end{aligned}
$$

$W_{2}=111$
$\mathbf{Y}_{2}=\{[101],[01 \underline{0}]\}$
$\mathbf{Y}_{2}^{*}=\{[110],[011]\}$
Output of Search_All (\mathbf{Y}_{2}):
\emptyset.
Output of Search_All (\mathbf{Y}_{2}^{*}):

$$
\begin{aligned}
& C_{2}=1 \underline{1} \\
& \mathbf{Y}_{3}^{*}=\mathbf{X}_{2}=\{[110]\} \\
& \mathbf{Y}_{3}=\mathbf{X}_{2}^{*}=\{[01 \underline{0},[100]\} \\
& W_{3}=W_{2} \ominus C_{2}^{t}=11 \underline{0}
\end{aligned}
$$

(c)

Example of Application

$$
\begin{gathered}
\text { Representation Tree } \\
\delta_{C_{1}} \\
\varepsilon_{C_{2}}^{t} \\
\bullet \\
\delta_{C_{3}} \\
\\
\bullet
\end{gathered} Y_{1}=Y=Y_{1}=Y_{2}=Y_{2}^{*}=X_{3}
$$

$W_{3}=11 \underline{0}$
$\mathbf{Y}_{3}=\{[010],[100]\}$
$\mathbf{Y}_{3}^{*}=\{[110]\}$
Output of Search_All (\mathbf{Y}_{3}):

$$
C_{3}=\underline{11}
$$

$$
\mathbf{Y}_{4}=\mathbf{X}_{3}=\{[1 \underline{0}]\}
$$

$$
W_{4}=W_{3} \ominus C_{3}^{t}=1 \underline{0}
$$

Output of Search_All (\mathbf{Y}_{3}^{*}): \emptyset.
(d)

Example of Application

Representation Tree

	\bullet
$\delta_{C_{1}}$	$Y_{1}=Y$
$\varepsilon_{C_{2}^{t}}$	$Y_{2}=X_{1}$
$\delta_{C_{3}}$	$Y_{3}=X_{2}^{*}$
$\delta_{C_{4}}$	$Y_{4}=X_{3}$
	Y_{5}

$$
\begin{aligned}
& W_{4}=10 \\
& \mathbf{Y}_{4}=\{[10]\} \\
& C_{4}=\underline{01} \\
& \quad \mathbf{Y}_{5}=\{[1]\} \\
& W_{5}=W_{4} \ominus C_{4}^{t}=\underline{1}
\end{aligned}
$$

(e)

$\psi=\epsilon_{\mathbf{P}} \vee \epsilon_{\mathbf{Q}} \vee \epsilon_{\mathbf{R}} \vee \boldsymbol{\epsilon}_{\mathrm{S}}$
 9 basic operations
 $$
\psi=\delta_{C_{1}} \varepsilon_{C_{2}^{t}} \delta_{C_{3}} \delta_{C_{4}}
$$

7 basic operations

Experimental Results

Operator	NOSD	NOBS	T
ψ_{1}	111	30	1.8 s
ψ_{2}	111	16	12.0 s
ψ_{3}	319	17	1.0 s
ψ_{4}	431	20	4.2 s
ψ_{5}	187	15	48 m 23 s
ψ_{6}	143	16	30 m 43 s

NOSD = Number of Operations using the Sup-Decomposition.
NOBS = Number of Operations using the Best Solution.
$\mathbf{T}=$ Time taken by the algorithm for finding the Best Solution.

Conclusions

- Problem of transforming the sup-decomposition to sequential decompositions (when they exist).
- Applied to compute sequential decompositions of operators built by compositions of dilations and erosions.
- Minkowski Factorization Equation:
- General case;
- Fixed Right Extremities.
- Future step: Find parallel algorithms for these results.

