From the Sup-Decomposition to a Sequential Decomposition

Ronaldo Fumio Hashimoto
Junior Barrera
Edward R. Dougherty

Computer Science Department University of São Paulo - Brazil

Outline

- Introduction
- Collection of Maximal Intervals
- Minkowski Factorization Equation
- Bounds
- Fixed Right Extremity Simplification
- W-Operators
- Sup-Decomposition to Sequential Decomposition
- Conclusion

Introduction

Morphological Machine

Introduction

Interval

 $A, B \in P(W) : A \subseteq B$ $[A,B]=\{X \in P(W) : A \subseteq X \subseteq B\}$

Collection of Intervals

$$X_{W} = \{[A_{1}, B_{1}], [A_{2}, B_{2}], ..., [A_{n}, B_{n}]\}$$

 X_W is a Coll. of Maximal Intervals iff $\forall [A,B] \in X_W$, $\nexists [A',B'] \in X_W$: $[A',B'] \neq [A,B]$ and $[A,B] \subseteq [A',B']$.

Let Π_W denote the set of all collections of maximal intervals contained in P(P(W)).

Partial Order on the elements in Π_W $X \le Y \Leftrightarrow \forall [A,B] \in X, \exists [A',B'] \in Y:$ $[A,B] \subseteq [A',B']$

Collection of Maximal Intervals (∏w,≤) is a Complete Boolean Lattice 10

Supremum operation: $\forall X, Y \in \Pi_{W}$ $X \sqcup Y = M(\cup(X) \cup \cup(Y))$

Some operations on $X_{W} \in \Pi_{W}$:

$$(X_h)_{W+h} = \{ [A_h, B_h] : [A, B] \in X \}$$

Some operations on $X_{W} \in \Pi_{W}$:

$$X_{\mathsf{W}} \oplus \mathsf{C} = \sqcup \{ (X_{\mathsf{h}})_{\mathsf{W} \oplus \mathsf{C}} : \mathsf{h} \in \mathsf{C} \}$$

Minkowski Factorization Equation

Given $Y_{W'} \in \Pi_{W'}$ and $C \in P(E)$, find $W \in P(E)$ and $X_{W} \in \Pi_{W}$ such that

$$X_{\mathsf{W}} \oplus \mathsf{C}^{\mathsf{t}} = Y_{\mathsf{W}'}$$
 (1)

$$\begin{array}{c|c} W=W'\ominus C^t \\ L_W \leq X_W \leq U_W \\ \hline \end{array}$$

$$\begin{array}{c|c} Upper bound \\ \hline \\ Lower bound \\ \end{array}$$

14

Algorithm for Finding X_W

$$C \in P(E)$$

$$Y_{W'} \in \Pi_{W'}$$

Find $X_{W} \in \Pi_{W'}$ such that $X_{W} \oplus C^{t} = Y_{W'}$.

Algorithm Search 1:

Compute U_W For each $L_W \in \Theta_C(Y_{W'})$ do For each X_W such that $L_W \leq X_W \leq U_W$ If $X_W \oplus C^t = Y_{W'}$ Output X_W

Fixed Right Extremity

$$R_{\mathbf{W}} \subseteq \Pi_{\mathbf{W}}$$

 $X \in \mathbb{R}_{W} \Leftrightarrow$ The right extremity of any interval in X is the window W.

 $X = \{[A], [B], [C]\} \in \mathbb{R}_{W}$

Lower Bound Simplification

Property:

 $\forall X_{\mathsf{W}} \in \mathbb{R}_{\mathsf{W}} \text{ such that } X_{\mathsf{W}} \oplus \mathbb{C}^{\mathsf{t}} = Y_{\mathsf{W}'}$ $\exists L_{\mathsf{W}} \in \Phi_{\mathsf{C}}(Y_{\mathsf{W}'}), \ L_{\mathsf{W}} \leq X_{\mathsf{W}} \text{ and } L_{\mathsf{W}} \oplus \mathbb{C}^{\mathsf{t}} = Y_{\mathsf{W}'}$

Algorithm for Finding X_W

$$C \in P(E)$$
 $Y_{W'} \in R_{W'}$ $W=W' \ominus C^{t}$
Find $X_{W} \in R_{W'}$ such that $X_{W} \oplus C^{t} = Y_{W'}$.

Algorithm Search 2:

```
Compute U_W

For each L_W \in \Phi_C(Y_{W'}) do

If L_W \oplus C^t = Y_{W'}

For each X_W such that L_W \leq X_W \leq U_W

If X_W \oplus C^t = Y_{W'}

Output X_W
```

Feasible Sets

 $C \in P(E)$ is feasible

 $X_{W} \oplus C^{t} = Y_{W'}$

has at least one solution.

Minimal Left Extremity

$$[A] \in X_W$$

[A] is minimal in $X \Leftrightarrow \forall [B] \in X_W$, $|A| \leq |B|$

Minimal Left Extremity

$$[A] \in X$$

 $Min(X) = \{[A] \in X : [A] \text{ is minimal in } X\}$

Minimal Left Extremity

$$A \in P(E)$$

$$S_A(X) = \{h \in E : [A_{-h}] \in X\}$$

$$\overrightarrow{h}$$

$$S_{A}(X) = \{o,h\}$$

Invariant $A, B \in P(E)$ B is an invariant of A iff $B = (A \ominus B) \oplus B$ 23

Algorithm for Finding C and Xw

Given $Y_{W'} \in \mathbb{R}_{W'}$, find $C \in P(E)$ and $X_{W} \in \mathbb{R}_{W'}$ such that $X_{W} \oplus C^{t} = Y_{W'}$.

Algorithm Search_All:

```
Let [A] \in Min(Y):
\forall [B] \in Min(Y), |S_A(Y)| \leq |S_B(Y)|
For each C \subseteq S_A(Y) do
\text{If C is an invariant of } S_A(Y)
\text{Let } \{X_1, \cdots, X_n\} \text{ be}
\text{the output of Search}_2(Y, C)
For i=1 to n output the pair (C, X_i)
```

Operator

An operator is a mapping from P(E) to P(E)

$$\psi: P(E) \rightarrow P(E)$$

Translation Invariance

Translation of X by h:

$$X_h = \{x+h : x \in X\}$$

W is translation

⇒ invariant iff

$$\psi(X_h)=[\psi(X)]_h$$

Local Definition

Window: W ⊆ E

→ An operator is locally defined within W iff

$$h \in \psi(X) \Leftrightarrow h \in \psi(X \cap W_h)$$

X∩W_h

 $\psi(X\cap W_h)$

W-Operators

Ical definition within W

W-operators

Kernel

$$\mathcal{K}(\psi) = \{ \mathbf{X} \in \mathsf{P}(\mathsf{W}) : \mathbf{0} \in \psi(\mathsf{X}) \}$$

$$\mathcal{K}(\psi) = \{A, B, C, D\}$$

Basis

$$B(\psi) = M (\mathcal{K}(\psi))$$

 $B(\psi) = \{[A,B], [B,C], [D,C]\}$

Sup-Decomposition

$$\psi = \vee \{\lambda_{A,B} : [A,B] \in B(\psi)\}$$

$$\psi = \lambda_{A,B} \vee \lambda_{B,C} \vee \lambda_{D,C}$$

Increasing Operator

 ψ is increasing \Leftrightarrow B(ψ) \in R_w

Collection of Maximal Fixed Right Extremity Intervals

Non-increasing 32

Increasing Operator

$$\psi = \vee \{ \epsilon_{\mathsf{A}} \colon [\mathsf{A},\mathsf{W}] \in \mathsf{B}(\psi) \}$$

$$\psi = \epsilon_{A} \vee \epsilon_{B} \vee \epsilon_{C}$$

Dual Operator

$$V(X) = X^{c} \leftarrow$$

 $\nu(X) = X^{c}$ — Negation Operator

$$\psi^* = \nu \psi \nu \leftarrow Dual Operator$$

Compositions of Erosions and Dilations

can be built by compositions
 of erosions and dilations

$$\psi = \epsilon_{A}\delta_{B}\epsilon_{B}\cdots\epsilon_{A}\delta_{B}\delta_{A}\epsilon_{C}\delta_{C}$$

Compositions of Erosions and Dilations

Properties

$$\psi \in \Upsilon_{W} \Rightarrow \psi$$
 is increasing

$$\psi \in \Upsilon_{\mathsf{W}} \Leftrightarrow \psi^* \in \Upsilon_{\mathsf{W}}$$

Transformation

$$\psi = \delta_{C} \varphi \Leftrightarrow B(\psi) = B(\varphi) \oplus C^{t}$$

$$\psi = \epsilon_{C} t \varphi \Leftrightarrow B(\psi^{*}) = B(\varphi^{*}) \oplus C^{t}$$

Transformation

$$\psi \in \Upsilon_{\mathsf{W}}$$

If (C, X) is an Output of Search_All ($B(\psi)$)

$$\Rightarrow \psi = \delta_{\mathsf{C}} \varphi, \varphi \in \Upsilon_{\mathsf{W}}, \mathsf{B}(\varphi) = X$$

If (D, X) is an Output of Search_All ($B(\psi^*)$)

$$\Rightarrow \psi = \epsilon_{D} t \varphi, \varphi \in \Upsilon_{W}, B(\varphi^{*}) = X$$

Representation Tree

$$\psi \in \Upsilon_{\mathsf{W}}$$

$$Y = B(\psi)$$

Representation Tree

$$\bullet \ Y_1 = Y$$

$$W = W_1 = 11\underline{1}11$$
 $\mathbf{Y}_1 = \mathbf{Y} = \{[00\underline{1}01], [10\underline{1}00], [01\underline{0}00], [00\underline{0}10]\}$

$$\psi = \epsilon_{P} \vee \epsilon_{Q} \vee \epsilon_{R} \vee \epsilon_{S}$$

(a)

Representation Tree

$$\delta_{C_1} \bigvee_{\bullet}^{\bullet} Y_1 = Y$$

$$\bullet Y_2 = X_1$$

$$W = W_1 = 11\underline{1}11$$

$$\mathbf{Y}_1 = \mathbf{Y} = \{[00\underline{1}01], [10\underline{1}00], [01\underline{0}00], [00\underline{0}10]\}$$

$$\mathbf{Y}_1^* = \mathbf{Y}^* = \{[11\underline{0}11], [01\underline{1}10]\}$$
Output of Search_All (\mathbf{Y}_1) :
$$C_1 = 10\underline{1}$$

$$\mathbf{Y}_2 = \mathbf{X}_1 = \{[10\underline{1}], [01\underline{0}]\}$$

$$W_2 = W \ominus C_1^t = 11\underline{1}$$
Output of Search_All (\mathbf{Y}_1^*) :
$$\emptyset$$
.

Representation Tree

$$\begin{array}{ccc}
\bullet & Y_1 = Y \\
\delta_{C_1} & \downarrow & \\
\varepsilon_{C_2^t} & \downarrow & \\
\bullet & Y_3 = X_2^*
\end{array}$$

$$W_2 = 11\underline{1}$$
 $\mathbf{Y}_2 = \{[10\underline{1}], [01\underline{0}]\}$
 $\mathbf{Y}_2^* = \{[11\underline{0}], [01\underline{1}]\}$
Output of SEARCH_ALL (\mathbf{Y}_2):
 \emptyset .
Output of SEARCH_ALL (\mathbf{Y}_2^*):
 $C_2 = 1\underline{1}$
 $\mathbf{Y}_3^* = \mathbf{X}_2 = \{[11\underline{0}]\}$
 $\mathbf{Y}_3 = \mathbf{X}_2^* = \{[01\underline{0}], [10\underline{0}]\}$
 $W_3 = W_2 \ominus C_2^t = 11\underline{0}$

(c)

Representation Tree

$$\delta_{C_1} \downarrow Y_1 = Y$$

$$\delta_{C_1} \downarrow Y_2 = X_1$$

$$\epsilon_{C_2^t} \downarrow Y_3 = X_2^*$$

$$\delta_{C_3} \downarrow Y_4 = X_3$$

$$W_3 = 110$$

 $\mathbf{Y}_3 = \{[010], [100]\}$
 $\mathbf{Y}_3^* = \{[110]\}$
Output of Search_All (\mathbf{Y}_3):
 $C_3 = 11$
 $\mathbf{Y}_4 = \mathbf{X}_3 = \{[10]\}$
 $W_4 = W_3 \ominus C_3^t = 10$
Output of Search_All (\mathbf{Y}_3^*):
 \emptyset .

Representation Tree

$$\delta_{C_1} \downarrow Y_1 = Y$$

$$\epsilon_{C_2^t} \downarrow Y_2 = X_1$$

$$\epsilon_{C_2^t} \downarrow Y_3 = X_2^*$$

$$\delta_{C_3} \downarrow Y_4 = X_3$$

$$\delta_{C_4} \downarrow Y_5$$

$$W_4 = 10$$

 $\mathbf{Y}_4 = \{[10]\}$
 $C_4 = 01$
 $\mathbf{Y}_5 = \{[1]\}$
 $W_5 = W_4 \ominus C_4^t = 1$

$$\psi = \epsilon_{P} \vee \epsilon_{Q} \vee \epsilon_{R} \vee \epsilon_{S}$$

9 basic operations

$$\psi = \delta_{C_1} \varepsilon_{C_2^t} \delta_{C_3} \delta_{C_4}$$

7 basic operations

Experimental Results

Operator	NOSD	NOBS	T
ψ_1	111	30	1.8s
ψ_2	111	16	12.0s
ψ_3	319	17	1.0s
ψ_4	431	20	4.2s
ψ_5	187	15	48m23s
ψ_6	143	16	30m43s

NOSD = Number of Operations using the Sup-Decomposition.

NOBS = Number of Operations using the Best Solution.

T = Time taken by the algorithm for finding the Best Solution.

Conclusions

- Problem of transforming the sup-decomposition to sequential decompositions (when they exist).
- Applied to compute sequential decompositions of operators built by compositions of dilations and erosions.
- Minkowski Factorization Equation:
 - General case;
 - Fixed Right Extremities.
- Future step: Find parallel algorithms for these results.