Representation of gray-scale windowed operators

Junior Barrera

Computer Science Department. University of São Paulo.

Edward R. Dougherty

Texas Center for Applied Technology. Texas A & M University

Layout

- Introduction
- Characterization of W-operators
- Sup-representation of characteristic functions
- K-characteristic functions
- WK-operators
- Conclusion

Introduction

- A fundamental problem in Mathematical Morphology is the design of function operators
- An approach for operators design is statistical optimization in a space of operators
- In the optimization, it is fixed a family of useful operators that have a standard representation
- The complexity of the optimization depends on the size of the family of operators considered

- In the binary case, the family of W-operators is usually considered
- The family of binary W-operators has $2^{|W|}$
- In the gray-scale case, the family of W-operators is also usually considered
- The family of gray-scale W-operators has l^{mW}
- In ordinary applications l=m=256

- The family of WK-operators depends on a spatial window W and a gray-scale window K $k^{k^{|W|}}$
- The family of WK-operators has
- The complexity of the optimization problem is controlled by k and |W|
- The values of k and W depends on the problem: k=3, 5, 7, ... and |W| = 9, 25, 49, ...

Characterization of W-operators

- Function translation: $f_x(z) = f(z x)$
- Translation invariant operator : $\Psi(f_x) = \Psi(f)_x$
- Locally defined operator in W: $\Psi(f)(x) = \Psi(f/W_x)(x)$
- W-operator is t.i. and 1.d.: $\Psi(f)(x) = \psi(f_{-x}/W)$

Dilation by W

2	1	2	1
5	5	4	3
8	3	8	5
25	18	22	25

Sup-representation of characteristic functions

• Let $a, b \in Fun[W,L], a \le b \text{ iff } a(x) \le b(x), x \in W$

• Interval $[a,b] = \{u \in \operatorname{Fun}[W,L]: a \le u \le b\}$

_	 _	-

• Sup-generating operator: $\lambda_{a,b}(u) = 1 \Leftrightarrow u \in [a,b]$

[a,b]

 $\lambda_{a,b}$

Kernel of ψ at *y*: K(ψ)(*y*) = { $u \in Fun[W,L]: y \le \psi(u)$ }

2	0	1	2	2	2
1	0	1	2	2	2
0	-1	1	2	2	2
-1	-1	1	1	1	1
-2	-2	-1	-1	-1	-1

-2 -1 0 1 2

 $K(\psi)(-2)$

 $K(\psi)(-1)$

K(ψ)(0) K(ψ)(1)

 $K(\psi)(2)$ 10

Basis of ψ at y: B(ψ) is the set of maximal intervals contained in K(ψ)

Sup-representation

$$\psi(u) = \bigcup \{ y \in M : \bigcup \{ \lambda_{a,b}(u) : [a,b] \in B(\psi)(y) \} = 1 \}$$

 $\psi(-1,-1) = 1$

K-characteristic functions

• Gray-scale translation: (u + y)(z) = u(z) + y

• Gray-scale window:
$$\left\{-\frac{k-1}{2},...,-1,0,1,...,\frac{k-1}{2}\right\}$$

Windowing of *u* at *y*

$$(u / K_y)(z) = \bigcap \left\{ \bigcup \left\{ -\frac{k-1}{2}, u(z) - y \right\}, \frac{k-1}{2} \right\}$$

• gray-scale t. i.: $\psi(u + y) = \psi(u) + y$

• locally defined in K:
$$\psi(u) = u(o) + \beta_{u(o)}(u / K_{u(o)})$$

• Representation:
$$\psi(u) = u(o) + \beta_{\psi}(u / K_{u(o)})$$

	2	-2	1	2	2	2
ß	1	-2	1	2	2	2
$ ho_{\psi}$	0	-2	1	2	2	2
	-1	-2	1	1	1	1
	-2	-2	-2	-2	-2	-2

-2 -1 0 1 2

			Ψ				u(o)										eta_{ψ}		
14	12	13	14	15	16		14	10	11	12	13	14		14	2	2	2	2	2
13	12	13	14	15	15		13	10	11	12	13	14		13	2	2	2	2	1
12	12	13	14	14	12	=	12	10	11	12	13	14	+	12	2	2	2	1	-2
11	12	13	13	11	12		11	10	11	12	13	14		11	2	2	1	-2	-2
10	12	12	10	11	12		10	10	11	12	13	14		10	2	1	-2	-2	-2
	10	11	12	13	14			10	11	12	13	14			10	11	12	13	14

WK-operators

$$K = \{-2, -1, 0, 1, 2\}$$

17

Conclusion

- The family of WK-operators was introduced
- The size of the family of WK-operators depends on *K* and *W*
- A WK-operator is characterized by a computational function that has a sup-representation
- Preliminary results with design of WK-operators are encouraging
- This is a general approach for designing Image or Signal Processing operators