Projeto Multiresolução de Operadores Morfológicos a Partir de Exemplos

Daniel André Vaquero Orientador: Junior Barrera

Departamento de Ciência da Computação Instituto de Matemática e Estatística (IME) Universidade de São Paulo (USP)

> Defesa de Mestrado 19 de Abril de 2006

Roteiro

- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- Conclusão

Roteiro

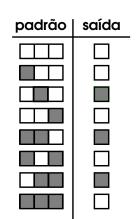
- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- 4 Conclusão

Motivação

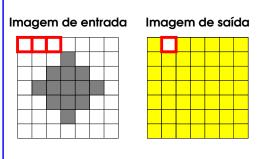
Projeto de W-operadore Projeto Multiresolução

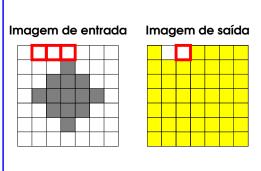
Objetivos

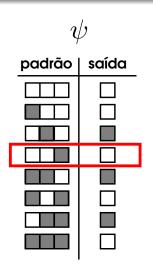
Processamento de Imagens

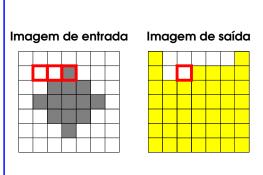

Roteiro

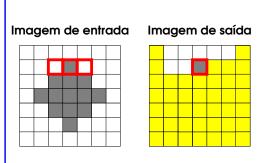
- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- 4 Conclusão

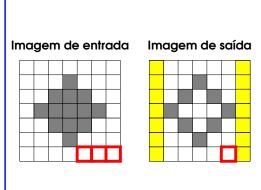

$$\psi$$
 : {0,1} \longrightarrow {0,1}

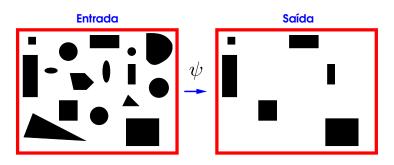






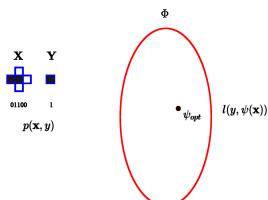


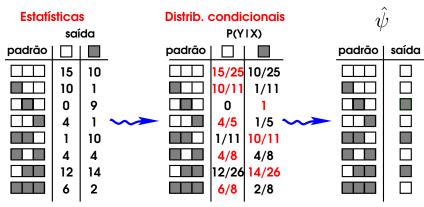




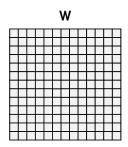
Projeto a Partir de Exemplos

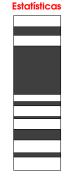
Idéia

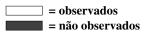

Aprender um operador a partir de pares de imagens de entrada/saída


O processo de aprendizado

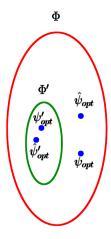
$$\text{minimizar} \sum_{\mathbf{x},y} P(\mathbf{x},y) I(y,\psi(\mathbf{x})) = \sum_{\mathbf{x}} P(\mathbf{x}) \sum_{\mathbf{y}} P(y|\mathbf{x}) I(y,\psi(\mathbf{x}))$$


O processo de aprendizado





Problema com janelas grandes


Problemas:

- Padrões não observados
- Representação

Projeto utilizando restrições

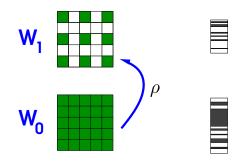
Restrição no espaço de operadores

$$\begin{split} \Delta(\psi_{opt}, \psi'_{opt}) + E[\Delta(\hat{\psi'}_{opt}, \psi'_{opt})] \\ \leq E[\Delta(\hat{\psi}_{opt}, \psi_{opt})] \end{split}$$

Projeto utilizando restrições

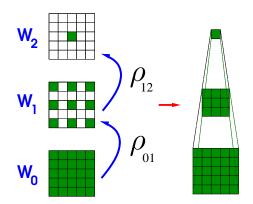
Restrição no conjunto de distribuições de probabilidade

- exemplo: gaussianas
- custo de restrição = 0; porém, modelos inadequados podem levar ao aumento do erro de estimação

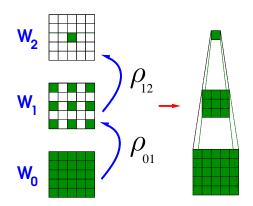

Roteiro

- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- 4 Conclusão

Restrição de resolução

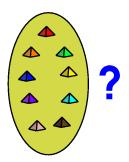


se
$$\rho(\mathbf{x}) = \rho(\mathbf{x}')$$
 então $\psi(\mathbf{x}) = \psi(\mathbf{x}')$


Pirâmide de janelas

Operadores multiresolução

Roteiro


- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- 4 Conclusão

Escolha da Pirâmide

Cada pirâmide induz um W-operador. Como escolher uma boa pirâmide?

Objetivos

Pirâmides de Imagens

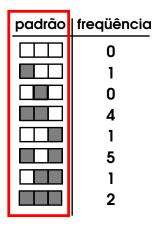
Roteiro

- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- 4 Conclusão

- uso de uma pirâmide para estimar a distribuição conjunta
- p(Y|X) e p(X)

Estatísticas

saída

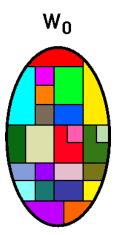

padrão		
	15	10
	10	1
	0	0
	4	1
	0	0
	4	4
	12	14
	6	2

Estatísticas

Algoritmo de estimação

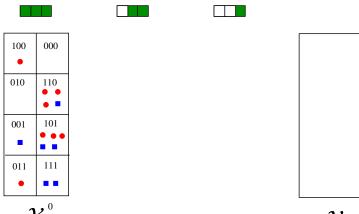
Recebe: Δ , α , coleção de pares de exemplo

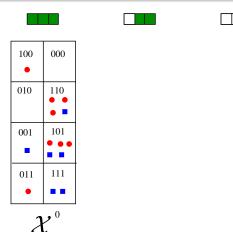
Devolve: Partição $\mathcal{X} = \{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n\}$ do espaço de configurações, que representa a distribuição conjunta

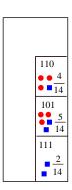

$$\forall \mathbf{x}_i \in \mathcal{X}_i, \quad P(\mathbf{Y}|\mathbf{x}_i) = P(\mathbf{Y}|\mathcal{X}_i)$$

е

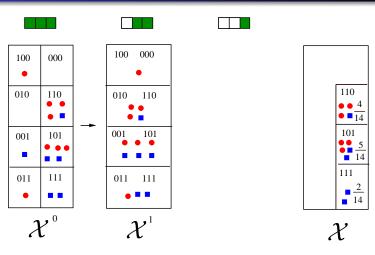
$$\Gamma(\mathcal{X}_i) = \sum_{\mathbf{x} \in \mathcal{X}_i} P(\mathbf{x})$$

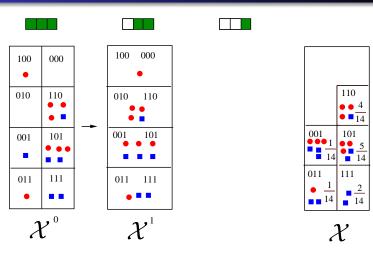




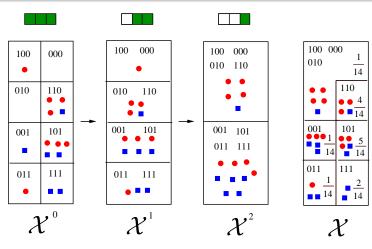


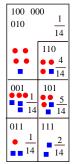
X











Estimação Multiresolução

 \mathcal{X}

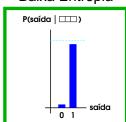
- Resultado: partição de {0,1}^{W₀}
- Representada por:
 - uma seqüência de tabelas
 - uma pirâmide de janelas

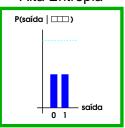
Roteiro


- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- 4 Conclusão

Escolha da Pirâmide

Cada pirâmide induz uma distribuição condicional, a partir da qual é projetado o W-operador. Como escolher uma boa pirâmide?

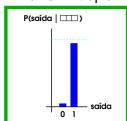



Entropia

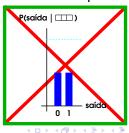
$$H(X) = -\sum_{x \in \mathcal{A}_{Y}} P(x) \log_{2}(P(x))$$

Baixa Entropia

Alta Entropia



Escolha da Pirâmide


Entropia condicional

$$H(Y|X) = \sum_{x \in A_X} P(x) \cdot H(Y|x)$$

Baixa Entropia

Alta Entropia

Cálculo da Entropia Condicional

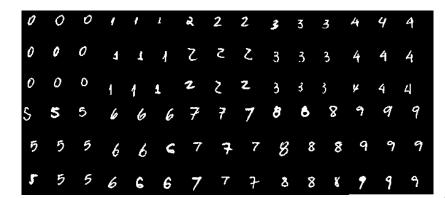
100 00	
010	1
	14
• •	110
• •	• • <u>4</u>
•	• • 14
001	101
1	5
1 4	14
011	111
1	_ 2
14	14

$$H(Y|\mathbf{X}) = \sum_{\mathbf{x} \in \mathcal{A}_{\mathbf{X}}} P(\mathbf{x}) \cdot H(Y|\mathbf{x})$$

$$= \sum_{i=1}^{n} \sum_{\mathbf{x} \in \mathcal{X}_{i}} P(\mathbf{x}) \cdot H(Y|\mathbf{x})$$

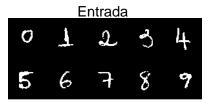
$$= \sum_{i=1}^{n} (\sum_{\mathbf{x} \in \mathcal{X}_{i}} P(\mathbf{x})) \cdot H(Y|\mathcal{X}_{i})$$

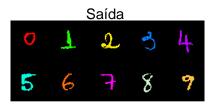
$$= \sum_{i=1}^{n} \Gamma(\mathcal{X}_{i}) \cdot H(Y|\mathcal{X}_{i})$$


Roteiro

- Introdução
 - Motivação
 - Projeto de W-operadores
 - Projeto Multiresolução
 - Objetivos
- Nossa abordagem
 - Estimação piramidal da distribuição conjunta
 - Escolha da pirâmide
- Resultados Experimentais
 - Classificação de dígitos manuscritos
- 4 Conclusão

Classificação de dígitos manuscritos





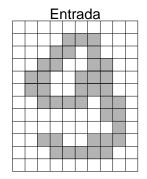
Treinamento

Conjunto de treinamento

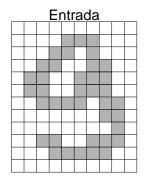
Aproximadamente 47000 dígitos

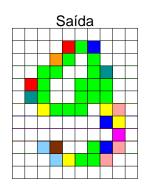
$$\psi: \{0,1\}^W \to \{0,...,9\}$$

Projeto do Operador

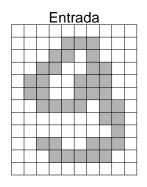

Critérios de decisão

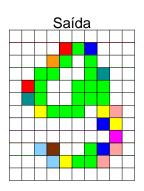
- Máxima verossimilhança: escolher y que maximiza
 P(x|Y = y)
- Moda: escolher y que maximiza P(y|x)

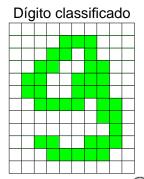

Classificação



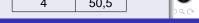
Classificação







Classificação


Entropias condicionais

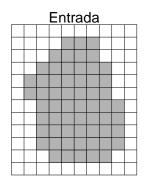
Pirâmide	Entropia
14	0,276
11	0,317
10	0,441
13	0,477
5	0,480
12	0,527
6	0,543
1	0,572
9	0,580
8	0,600
2	0,611
3	0,652
7	0,680
4	0,807

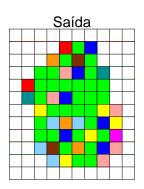
Taxa de acerto (%)

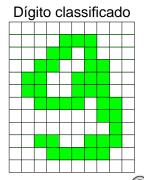
Pirâmide	Acerto
14	89,4
11	88,6
10	85,6
13	74,7
12	73,8
8	71,5
7	70,4
9	68,8
6	68,4
3	54.9
5	54,8
2	51,7
1	51,7
4	50.5

Melhor pirâmide (número 14): variação do esquema de amostragem quincunx

Melhor pirâmide (número 14): variação do esquema de amostragem quincunx


Taxas de acerto (%) - Pirâmide 14


Método	α	Acerto
M.V.	2	89,4
Moda	2	88,1
Dougherty et. al (2000)	2	88,0
Dougherty et. al (2000)	1	88,2



Novo experimento

Novo experimento

- padrões no fecho convexo de cada dígito
- imagens em menor resolução
- dígitos normalizados quanto ao tamanho

Entropias condicionais

Pirâmide	Entropia
14	0,187
11	0,217
13	0,263
12	0,300
5	0,350
8	0,386
6	0,393
7	0,427
3	0,431
10	0,444
1	0,467
2	0,475
9	0,493
4	0,543

Taxa de acerto (%)

Pirâmide	Acerto
13	92,5
12	92,0
8	91,0
7	90,7
14	90,5
11	90,0
6	84,6
3	84,1
5	83,7
9	83,7
10	83,4
4	83,4
2	80,8
1	80.6

Taxas de acerto (%) - Pirâmide 13

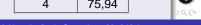
Método	α	Acerto
M.V.	2	92,5
Moda	2	91,3
Dougherty et. al (2000)	2	91,2
Dougherty et. al (2000)	1	91,3

Base de dados MNIST

MNIST DB

- teste para avaliação de algoritmos de análise de formas
- conjunto de treinamento = 60000 dígitos
- conjunto de teste = 10000 dígitos
- dígitos normalizados quanto ao tamanho

Base de dados MNIST


Entropias condicionais

Pirâmide	Entropia
14	0,182
11	0,204
10	0,327
13	0,367
12	0,405
5	0,405
6	0,431
8	0,476
1	0,493
9	0,499
2	0,522
3	0,531
7	0,535
4	0,693

Taxa de acerto (%)

Pirâmide	Acerto
14	96,71
11	96,51
10	95,21
13	92,60
12	92,18
8	91,79
7	91,47
6	90,75
9	90,67
5	84,84
3	84,19
1	82,05
2	81,76
4	75 94

Taxas de acerto (%) - Pirâmide 14

Método	α	Acerto
M.V.	2	96,71
Moda	2	96,16
Dougherty et. al (2000)	2	96,22
Dougherty et. al (2000)	1	96,83

Comparação com outros métodos

Algoritmo	Acerto (%)
Rede neural convolucional LeNet-5	99,05
Rede neural convolucional LeNet-4	98,9
SVM, kernel Gaussiano	98,6
k-vizinhos mais próximos, L3 (Wilder)	97,17
Rede neural de 3 camadas, 500+150 unidades ocultas	97,05
Rede neural de 3 camadas, 300+100 unidades ocultas	96,95
k-vizinhos mais próximos, L2 (Wilder)	96,91
W-operadores multiresolução	96,83
40 PCA + classificador quadrático	96,7
1000 RBF + classificador linear	96,4
Rede neural de 2 camadas, 1000 unidades ocultas	95,5
Rede neural de 2 camadas, 300 unidades ocultas, MSE	95,3
k-vizinhos mais próximos, L2 (LeCun)	95,0
Classificador linear	88,0

Números variados de amostras

Mapeamentos de Pirâmides de Imagens

- Diversos filtros
- Amostragem quincunx
- Esqueletos dos dígitos

Conclusão

- Entropia condicional: foi eficaz na maioria dos experimentos
 - valor de saída
 - conjunto limitado de pirâmides
 - erros de estimação
- Boa capacidade de generalização (2²³ << 2²⁸⁹)
- Representação eficiente
- Pequenas variações nos erros obtidos para diferentes critérios
- Pirâmides de imagens: amostragem quincunx

Contribuições

- Algoritmo de estimação da distribuição conjunta
- Uso da entropia condicional na escolha da pirâmide
- Técnica de busca por distribuições de massa concentrada
- Mapeamentos da teoria de pirâmides de imagens
- Aplicação ao reconhecimento de dígitos manuscritos

Pesquisa Futura

- Combinar restrições no espaço de operadores com restrições no espaço de distribuições de probabilidade
- Aperfeiçoamento do critério de escolha da pirâmide
- Escolha da resolução em que é feita a estimação
- Parâmetro α : determinação automática, valores diferentes em cada resolução

Pesquisa Futura

- Outros tipos de mapeamentos de resolução (exemplo: wavelets)
- Seleção de características para escolher as janelas da pirâmide
- Aplicações: imagens em níveis de cinza, coloridas
- Refinamento do classificador de dígitos

