Design of Morphological Operators by Learning

Junior Barrera jb@ime.usp.br IME-USP

Layout

Introduction

- Binary operator design: W-operators
- Binary operator design: constraint Woperators
- Gray-scale operator design: apertures
 Gray-scale operator design: stack filters
 Conclusion

Introduction

Morphological Machine (MMach)

Properties

 Any finite lattice operator can be implemented as a program of a MMach
 Finite lattices of practical importance are the lattice of binary and gray-scale images

Morphological Toolbox

- Library of hierarchical functions:
- primitives: elementary operators and operations;
- high order operators: primitives and high order operators

Heuristic Design

- Divide the problem in subproblems
- Each subproblem is solved by a toolbox function
- Integrate the subproblems solution

Automatic Design

Operator learning in a standard representation

Finding an equivalent and more efficient representation

Operator Design

Application

Change of Representation

 $\epsilon_{A_1} \vee \epsilon_{A_2} \vee \cdots \vee \epsilon_{A_n}$

Operators

ψ

Phrases

Operator Design

The problem

Find an image operator that transforms the **observed** image to the respective **ideal** (or "close to the ideal") image.

Binary image operators

Binary image :

$$f:E\to\{0,1\}$$

Binary images can be understood as sets :

$$f \longleftrightarrow S \ x \in S \Leftrightarrow f(x) = 1 \quad orall x \in E$$

 $(\mathcal{P}(E), \subseteq)$ is a complete Boolean lattice

 \blacksquare Binary image operators = set operators :

$$\Psi:\mathcal{P}(E)\to\mathcal{P}(E)$$

Translation invariance

Local definition

Window : $W \subseteq E$

 \blacksquare An image operator is locally defined within W iff

$$x\in \Psi(S) \Longleftrightarrow x\in \Psi(S\cap W_x)$$

W-operators

 $\Psi(S)(z)=\psi\Big(egin{array}{c}egin{ar$

Z.

W-operators are characterized by Boolean functions.

Representation

Statistical Hypothesis

X and Y are jointly stationary

$$P(S \cap W_z, Y)$$

is the same for any z in E

Stationary Process

Join Stationary Process

Error measure

Design goal is to find a function with minimum risk.

 \Rightarrow **Risk** (expected loss) of a function :

$$R(\psi) = E[l(\psi(X),Y)]$$

X is a random setY is a binary random variable

➡ Loss function

$$L: \{0,1\} \times \{0,1\} \rightarrow R^+$$

MAE example

Example : MAE loss function

$$l_{MAE}(a,b)=|a-b|$$
 $a,b\in\{0,1\}$

$$MAE\langle\Psi
angle = E[|\psi(X) - Y|]$$

Optimal MAE function

$$\psi(X) = \begin{cases} 1 & p(1, X) > p(0, X) \\ \\ 0 & p(1, X) \le p(0, X) \end{cases}$$

Design procedure

PAC learning

L is Probably Approximately Correct (PAC)

For $m > m(\mathcal{E}, \delta)$ examples

$\Pr(|R(\psi) - R(\psi_{opt})| < \varepsilon) > 1 - \delta$

$$\mathcal{E}, \delta \in (0, 1)$$

Edge detection

Noise filtering

Training images

Test images

Texture extraction (1)

Training images

Texture extraction (2)

Test images

Fracture Detection

Training images

Test images

Amount of data available

subtraction: 1% distict patterns : 140.060 in 1.548.384

addition: 2%

addition: 3% subtraction: 3% distinct patterns : 266.743 em 1.548.384

window 5x5, 6 training images

addition: 6% subtraction: 6% distinct patterns: 487.494 in 1.548.384

Size of the window

Constraint Design

Constraints

Constraints

Structural Constraints

- impose maximum number of elements in the basis
- use alternative structural representations (e.g., sequential)

Constraints

Algebraic constraints

 consider a class of operators satisfying a given algebraic property (e.g., increasingness, idempotence, auto-dualism, etc)

- consider a constraint by a multi-resolution criteria

- consider a constraint by an envelope of operators

- consider a constraint by a multi-resolution envelope criteria

Structural Constraint

Minimum number of intervals in the basis

(e)

of Structuring Elements in Basis

ponent is lar in the ction 2 th s system f

ponent is lar in the ction 2 th s system fo

Iterative design

Motivation : composition of operators over small windows produces an operator over a larger window

reduzida de seu produ clevados, juntamente e tos a adquirir o produ quantidades produzida: necessariamente, a red que a empresa mono---cado. Quantidades s

test image

Application example

Application example

Algebraic Constraint

Increasing *W*-operators

$$x \le y \Rightarrow \psi(x) \le \psi(y)$$

increasing

non-increasing

(e)

of Structuring Elements in Basis

Multi-resolution constraint

$$\begin{split} &D_1 = P(W_1) \\ &D_0 = P(W_0) \\ &\mathbf{z}_i = p_i(\mathbf{x}_{i1}, \dots, \mathbf{x}_{i9}) \ , \, \mathbf{z} = p(\mathbf{x}) \ , \, p = (p_1, \dots p_9) \\ &\text{Let } \phi: D_1 \longrightarrow \{0, 1\} \ , \, \text{it defines the operator } \Psi_{\phi} \text{ on } D_o \text{ by} \\ &\Psi_{\phi} (\mathbf{x}) = \phi(p(\mathbf{x})) \\ &\text{The operador } \Psi_{\phi} \text{ is constrained by resolution to } D_1 \end{split}$$

Properties

 Ψ_{ϕ}

Operators over D₁

Operators over D_0 constrained by resolution on D_1

Operators over D_0

$$\begin{split} \mathbf{D}_2 &= P(\mathbf{W}_2), \ \mathbf{D}_1 = P(\mathbf{W}_1), \ \mathbf{D}_0 = P(\mathbf{W}_0) \\ & \mathbf{x} \in \mathbf{D}_0, \ \mathbf{z} \in \mathbf{D}_1, \ \mathbf{v} \in \mathbf{D}_2, \\ & \mathbf{z}_i = \mathbf{p}_i(\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,9}) \ , \ \mathbf{z} = \mathbf{p}(\mathbf{x}) \ , \\ & \mathbf{p} = (\mathbf{p}_1, \dots, \mathbf{p}_{81}) \\ & \mathbf{v}_i = \mathbf{w}_i(\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,81}) \ , \ \mathbf{v} = \mathbf{w}(\mathbf{x}) \ , \\ & \mathbf{w} = (\mathbf{w}_1, \dots, \mathbf{w}_9) \end{split}$$

The equivalence classes defined by p may be different by the ones defined by w.

$$\psi(\mathbf{x}) = \begin{cases} \psi_{0,N}(\mathbf{x}) & if & N(\mathbf{x}) > 0 \\ \psi_{1,N}(\mathbf{x}) & if & N(\mathbf{x}) = 0, N(\rho_1(\mathbf{x})) > 0 \\ \vdots & \\ \psi_{m-1,N}(\mathbf{x}) & if & N(\mathbf{x}) = 0, \dots, N(\rho_{m-2}(\mathbf{x})) = 0, N(\rho_{m-1}(\mathbf{x})) > 0 \\ \psi_{m,N}(\mathbf{x}) & if & N(\mathbf{x}) = 0, \dots, N(\rho_{m-1}(\mathbf{x})) = 0, N(\rho_m(\mathbf{x})) > 0 \end{cases}$$

Envelope constraint

Independent Constraints

Constraints

Restriction of the operators space

 $\mathsf{K}(\psi_{\mathsf{opt}}) \in \mathsf{Q} \subseteq \textit{P}(\textit{P}(\mathsf{W}))$

Independent Constraint *Let be* $A,B \subseteq P(W)$ with $A \subseteq B$: $h_{\psi}(x)=1 \forall x \in A \& h_{\psi}(x)=0 \forall x \notin B,$ $\forall \psi : K(\psi) \in Q$

Independent Constraints

Proposition: if Q is an independent restriction then exist a par of operators (α,β) such that, for any $\psi \in \Psi_W$ $K(\psi) \in Q \Leftrightarrow \alpha \leq \psi \leq \beta$ where $K(\alpha) = A$ and $K(\beta) = B$

- All independent constraint is characterized by two operators α and β

The pair (α, β) is called "Envelope"

Definition

Desing of two heristic filters α and β such that when we know that $\alpha \le \psi_{opt} \le \beta$, the restriction is defined by:

 $\mathbf{Q} = \{ \psi : \alpha \le \psi \le \beta \}$

and any filter ψ can be projected into the restriction by

$$\psi_{env} = (\psi \lor \alpha) \land \beta$$

Properties

• $(\psi_{opt} \lor \alpha) \land \beta$ is optimal in **Q**.

• If $\alpha \leq \psi_{opt} \leq \beta$ then $\text{Error}[\psi_{env}] \leq \text{Error}[\psi]$

♦ If $\alpha \le \psi_{opt} \le \beta$ is not true, then $\lim_{N\to\infty} \operatorname{Error}[\psi_{env,N}] > \lim_{N\to\infty} \operatorname{Error}[\psi_N]$

Example

Noise Edge Detection

Restoration \longrightarrow a) Machine design of the restoration ψ_{pac} designed by examples b) Human-machine design of the restoration $\psi_{con} = (\psi_{pac} \cap \beta) \cup \alpha$ $\alpha = \delta_{B \oplus B} \varepsilon_{B \oplus B} \delta_B \varepsilon_B$ and $\beta = \varepsilon_{B \oplus B} \delta_{B \oplus B} \varepsilon_B \delta_B$ α and β are alternating sequential filters with $P[\alpha(S) \le I \le \beta(S)] \approx 1$ B is the 3x3 square

Machine design of the restoration	Human-Machine design of the restoration
0.28 %	0.13 %

Error (%)

Noise Edge Detection

Machine	Human	Machine
design over	design after	design after
noisy images	restoration	restoration
0.65 %	0.27 %	0.24 %

Noise Edge Detection

Envelope multi-resolution constraint

Definition

- $\blacklozenge\ W_1 \subset W_0 \ , \rho {:} D_0 \to D_1 \ is a resolution mapping$
- α , β : $D_1 \rightarrow \{0,1\}$ with $\alpha \leq \beta$
- $\bullet \quad \psi: \mathbf{D}_0 \to \{0.1\}$

$$\psi_{\rho}(\mathbf{x}) = \begin{cases} 1 & if \, \alpha(\rho(x)) = 1 \\ 0 & if \, \beta(\rho(x)) = 0 \\ \psi(\mathbf{x}) & otherwhise \end{cases}$$

• $\psi_{\rho} = (\psi \land \beta') \lor \alpha'$, $\alpha'(x) = \alpha(\rho(x))$ and $\beta'(x) = \beta(\rho(x))$

Piramidal Design:

Let $\psi_{i,env,N} = (\psi_{i,N} \land \beta') \lor \alpha'$, be the projection of the resolution constrained filter inside the envelope (α', β')

$$\psi_{env-mres}(\mathbf{x}) = \begin{cases} \psi_{0,N}(\mathbf{x}) & if & N(\mathbf{x}) > 0 \\ \psi_{1,env,N}(\mathbf{x}) & if & N(\mathbf{x}) = 0, N(\rho_{1}(\mathbf{x})) > 0 \\ \vdots & & \\ \psi_{m-1,env,N}(\mathbf{x}) & if & N(\mathbf{x}) = 0, \dots, N(\rho_{m-2}(\mathbf{x})) = 0, N(\rho_{m-1}(\mathbf{x})) > 0 \\ \psi_{m,env,N}(\mathbf{x}) & if & N(\mathbf{x}) = 0, \dots, N(\rho_{m-1}(\mathbf{x})) = 0, N(\rho_{m}(\mathbf{x})) > 0 \end{cases}$$

Properties:

- $\psi_{env-mres}$ is a consistent estimator of ψ_{opt}
- If the envelope is well defined on D₁, then the ρ-envelope of a resolution constrained filter is advantageous

Figura 5.7: Primeira imagem corrompida com ruído

B E

 $\alpha = \varepsilon_B(\gamma_E \phi_E \gamma_E)$ $\beta = \delta_B(\phi_E \gamma_E \phi_E)$

Solid = 1 2 3 4 Ψ_{mul} --- Ψ_{env-mul} Ψ[°]env-mul ខ្លុំ 2200 100 150 Number of training images

Gray-scale operator design: aperture

Spatial Translation Invariance

35

Gray-scale Translation Invariance

Locally defined in W

 $\Psi(f)(x) = \Psi(f / W_x)(x)$

Locally defined in W and K

Aperture Operator

-2

-2

_2

 \mathcal{B}_{w}

	β _ψ -1 -2	-2 1 2 -2 1 2 -2 1	2 2 2 2 2 2 2 2 2 1 1 1 ·2 -2 -2	Aperture Operator
Ÿ		-2 -1	0 1 2 (<i>o</i>)	β _ψ
14 12 13 14 15 1 13 12 13 14 15 1 12 13 14 15 1 12 13 14 15 1 12 13 14 14 1 11 12 13 14 14 1 10 12 13 13 11 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101111011110111	121314121314121314121314	14 2 2 2 2 2 18 2 2 2 2 1 + 12 2 2 2 1 -2 10 2 1 -2 -2 -2 -2

Let $a, b \in \text{Fun}[W,L]$, $a \le b$ iff $a(x) \le b(x)$, $x \in W$

• Interval $[a,b] = \{u \in \operatorname{Fun}[W,L]: a \le u \le b\}$

Sup-generating operator:

$$\lambda_{a,b}(u) = 1 \Leftrightarrow u \in [a,b]$$

[a,b]

 $\lambda_{a,b}$

Kernel of ψ at y: $K(\psi)(y) = \{u \in Fun[W,L]: y \le \psi(u)\}$

Sup-representation

 $\psi(u) = \bigcup \{ y \in M : \bigcup \{ \lambda_{a,b}(u) : [a,b] \in B(\psi)(y) \} = 1 \}$

 $\Psi(-1,-1) = 1$

Observed

These are part of the observed and ideal images (512x512)

MAE x Number of Examples

97

Debluring - Aperture x Optimal linear

Aperture 17p x 5 x 5

Optimal linear 7x7

Resolution Enhancement

Resolution Enhancement

(0,1)

(0,0)

Resolution Enhancement - Results

Original

Aperture: 3x3x21x51

101

Resolution Enhancement - Results Zoom

Original

Aperture: 3x3x21x51

Linear

Bilinear

Gray-scale operator design: stack filters

A stack filter is a gray-scale operator characterized by a positive (i.e., increasing) Boolean function

$$\psi(f) = \max\{t \in K : \psi(T_t[f]) = 1\}$$

where

$$T_t[f] = \{x \in W : f(x) \ge t\}$$

Impulse noise removal (1)

training images

Impulse noise removal (2)

test image

Impulse noise removal (3)

test image

Robustness (1)

test image

Robustness (2)

test image

Conclusion

- Design of Morphological Operators: a discrete nature problem
- Fundamentals: Algebra, Statistics, Combinatory
- Real problems solution
- Design techniques adequate to introduce prior knowledge
- Identification of Lattice Dynamical Systems