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PropertiesProperties

�� Any Any finite latticefinite lattice operator can be operator can be 

implemented as a implemented as a programprogram of a of a MMachMMach

�� Finite lattices of practical importance are the Finite lattices of practical importance are the 

lattice of lattice of binarybinary and and graygray--scale imagesscale images
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Morphological ToolboxMorphological Toolbox

�� Library of Library of hierarchical functionshierarchical functions::

�� -- primitivesprimitives: elementary operators and : elementary operators and 

operations;operations;

�� -- high order operatorshigh order operators: primitives and high : primitives and high 

order operators                                                order operators                                                
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Heuristic DesignHeuristic Design

�� DivideDivide the problem in the problem in subproblemssubproblems

�� Each Each subproblemsubproblem is solved by a is solved by a toolbox toolbox 

functionfunction

�� IntegrateIntegrate the the subproblemssubproblems solutionsolution
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Automatic DesignAutomatic Design

�� Operator learning in a standard Operator learning in a standard 

representationrepresentation

�� Finding an equivalent and more efficient Finding an equivalent and more efficient 

representationrepresentation
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Operator Design Operator Design 
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ApplicationApplication
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Change of RepresentationChange of Representation

dAeA

e ⁄ e ⁄ Ä Ä Ä ⁄ eA1 A2 An

y

Phrases

Operators



Operator DesignOperator Design
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The problemThe problem

Find an image operator that transforms the observed

image to the  respective  ideal  (or “close to the ideal”) 

image.

observed ideal
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Binary image operatorsBinary image operators

Binary image :

Binary images can be understood as sets :

is a complete Boolean lattice

Binary image operators  =  set operators :
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Translation invarianceTranslation invariance

translation-invariant iff

Translation of S by z :

is
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Local definitionLocal definition

An image operator is  locally defined within         iff

Window :
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WW--operatorsoperators

Translation invariance 

+

local definition within    

=

-operators

z

W-operators are characterized by Boolean functions.
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RepresentationRepresentation

Window

X11 1X0 11X
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Statistical HypothesisStatistical Hypothesis

X and Y are jointly stationary

),( YWSP z∩

is the same for any z in E
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Stationary ProcessStationary Process
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Join Stationary ProcessJoin Stationary Process
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Error measureError measure

Loss function

Risk (expected loss) of a function :

Design goal is to find a function

with minimum risk.

X is a random set

Y is a binary random variable
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Optimal MAE function

Example :  MAE  loss function





≤

>

=

),0(),1(      0

),0(),1(      1

)(

XpXp

XpXp

Xψ

MAE exampleMAE example
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Design procedureDesign procedure
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PAC learningPAC learning

L is Probably Approximately Correct (PAC)

For                               examples),( δεmm >

δεψψ −><− 1) |)()(Pr(| optRR

)1 ,0(, ∈δε
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Edge detectionEdge detection

Test images

Training images
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Noise filteringNoise filtering

Training images

Test images
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Texture extraction Texture extraction (1)(1)

Training images
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Texture extraction Texture extraction (2)(2)

Test images
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Fracture DetectionFracture Detection

Training images Test images



3131

18,10 %

3,13 %
2,68 %

2,21 %
2,01 %

1,82 %
1,69 % 1,60 %

Noise 1 image 2 images 3 images 8 imagess 13 images 25 images 32 images

Last Image

Amount of data availableAmount of data available
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addition: 2%

subtraction: 1%

distict patterns : 140.060

in 1.548.384

addition: 3%

subtraction: 3%

distinct patterns : 266.743

em 1.548.384

addition: 6%

subtraction: 6%

distinct patterns: 487.494

in 1.548.384

window 5x5, 6 training images
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Size of the windowSize of the window

Error rate in function of window size
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Constraint DesignConstraint Design
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optψ

Ψ

ConstraintsConstraints
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ConstraintsConstraints

E
rr

o
r

N0N1 N2

Sample size

εdes

εdes-con

εopt

εopt-con
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ConstraintsConstraints

Structural Constraints

- impose maximum number of elements in the basis

- use alternative structural representations
(e.g.,  sequential)
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ConstraintsConstraints

- consider a constraint by an envelope of operators

- consider a constraint by a multi-resolution criteria

- consider a constraint by a multi-resolution envelope 
criteria

Algebraic constraints

- consider a class of operators satisfying a given 
algebraic property  (e.g., increasingness , 
idempotence, auto-dualism, etc)



Structural ConstraintStructural Constraint



Minimum number of intervals Minimum number of intervals 

in the basisin the basis
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Iterative designIterative design
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is  a -operator

Motivation : composition of operators over small 
windows produces an operator over a larger window
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Application exampleApplication example

test image

iteration 1

iteration 2
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Application exampleApplication example

test image iteration 1

iteration 4 iteration 5 iteration  6

iteration 2 iteration 3



Algebraic ConstraintAlgebraic Constraint
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Increasing W-operators

increasing non-increasing
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increasing

increasing
non-increasing

Design of increasing W-operators
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MultiMulti--resolution constraintresolution constraint
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W0

W1

D1 = P(W1)

D0 = P(W0)

zi = pi(xi1, ... , xi9)  , z = p(x)  , p=(p1, .. p9)

Let φ:D1→{0,1} , it defines the operator Ψφ on Do by

Ψφ (x) = φ(p(x))

The operador Ψφ is constrained by resolution to D1

Equivalence classes defined

by

p(x) = p(y)

D0
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Properties

Operators over D0

Operators over D0 constrained by resolution on D1

Operators over D1

Q φ
Ψφ
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W2

W1

W0

D2 = P(W2),  D1 = P(W1), D0 = P(W0) 

x ∈D0, z ∈D1, v ∈D2, 

zi = pi(xi,1, ... , xi,9)  , z = p(x)  , 

p=(p1, .. p81)

vi = wi(xi,1, ... , xi,81)  , v = w(x)  , 

w=(w1, .. w9)

The equivalence classes defined by
p may be different by the ones
defined by w.

p

w
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ψ

ψ

ψ ρ

ψ ρ ρ

ψ ρ ρ
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image noise image + noise

MultiresolutionMultiresolution NoiseNoise
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3x3 window

Pyramid

Restauration Persisting noise
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Example
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Envelope constraintEnvelope constraint
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Independent ConstraintsIndependent Constraints

ConstraintsConstraints

Restriction of Restriction of 

the operators spacethe operators space

K(K(ψψψψψψψψoptopt) ) ∈∈∈∈∈∈∈∈ Q Q ⊆⊆⊆⊆⊆⊆⊆⊆ PP((PP(W))(W))

P(P(W))

Q

K(ψψψψopt)

Independent Constraint Independent Constraint 

Let   be   ALet   be   A,,BB ⊆⊆⊆⊆⊆⊆⊆⊆ PP(W)   with   (W)   with   AA⊆⊆⊆⊆⊆⊆⊆⊆BB::

hhψψψψψψψψ(x)=1 (x)=1 ∀∀∀∀∀∀∀∀ xx∈∈∈∈∈∈∈∈AA &   h&   hψψψψψψψψ(x)=0(x)=0∀∀∀∀∀∀∀∀xx∉∉∉∉∉∉∉∉BB, , 

∀ψ∀ψ∀ψ∀ψ∀ψ∀ψ∀ψ∀ψ :K(:K(ψψψψψψψψ) ) ∈∈∈∈∈∈∈∈QQ

A

B

P(W)

{1}

{0,1}

{0}

P(P(W))

A

B

Q
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Independent ConstraintsIndependent Constraints

PropositionProposition: if Q is an independent restriction then  exist a par of : if Q is an independent restriction then  exist a par of 

operatorsoperators

((αααααααα,,ββββββββ) such that, for any ) such that, for any ψ∈Ψψ∈Ψψ∈Ψψ∈Ψψ∈Ψψ∈Ψψ∈Ψψ∈ΨWW

K(K(ψψψψψψψψ) ) ∈∈∈∈∈∈∈∈Q Q ⇔⇔⇔⇔⇔⇔⇔⇔ α≤α≤α≤α≤α≤α≤α≤α≤ ψψψψψψψψ ≤β≤β≤β≤β≤β≤β≤β≤β

where  K(where  K(αααααααα) = ) = AA and   K(and   K(ββββββββ) = ) = BB

•• All independent constraint is characterized by two operators All independent constraint is characterized by two operators αααααααα and and 

ββββββββ

•• The pair (The pair (αααααααα,,ββββββββ) is called ) is called ““EnvelopeEnvelope””

A

B

P(W)

{1}

{0}

{0}

A

B

P(W)

{1}

{1}

{0}

hαααα hββββ
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Definition

Desing of two heristic filters α and β such that when we

know that α ≤ ψopt ≤ β, the restriction is defined by:

Q = {ψ : α ≤ ψ ≤ β}

and any filter ψ can be projected into the restriction by

ψ ψ α βenv = ∨ ∧( )
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Definition

α

β

Operators over P(W)

constrained by envelope

Operators over 

P(W)

ψ

ψenv

Q
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Properties

♦ (ψopt ∨ α ) ∧ β is optimal in Q.

♦If α ≤ ψopt ≤ β then Error[ψenv] ≤ Error[ψ]

♦If α ≤ ψopt ≤ β is not true, then

LimN→∞ Error[ψenv,N] > LimN→∞ Error[ψN]
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Example
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Noise 

Addition

Ground 

Image

Noisy Image Filtered 

Image

Edge 

DetectedRestoration
Edge 

Detection

Edge Detected

Direct Edge Detection

Noise Edge DetectionNoise Edge Detection
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Machine design of 

the restoration

Human-Machine 

design of the 

restoration

0.28 % 0.13 %

0

0,05

0,1

0,15

0,2

0,25

0,3

Error (%)

Machine design

of the restoration

Human design of

the restoration

Restoration a) Machine design of the restoration

b) Human-machine design of the restoration

ψψψψpac designed by examples

ψψψψcon = (ψψψψpac ∩β∩β∩β∩β) ∪∪∪∪ αααα

αααα = δδδδB⊕⊕⊕⊕BεεεεB⊕⊕⊕⊕BδδδδBεεεεB    and     ββββ = εεεε B⊕⊕⊕⊕BδδδδB⊕⊕⊕⊕B εεεε BδδδδB

αααα and ββββ are alternating sequential filters with 

P[ αααα(S) ≤≤≤≤ I ≤≤≤≤ ββββ(S) ] ≈≈≈≈ 1

B is the 3x3 square
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Edge 

Detection

a) Machine design over noisy images

b) Human design after restoration

ζζζζ pac designed by examples from noisy images

ζζζζ = Id - εεεεB

B is the 3x3 square

c) Machine design after restoration

ζζζζ pac designed by examples from restored images

Noise Edge DetectionNoise Edge Detection

Machine 

design over 

noisy images

Human 

design after 

restoration

Machine 

design  after 

restoration

0.65 % 0.27 % 0.24 %

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Error (%)

Machine design over

noisy images

Human design after

restoration

Machine design after

restoration
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Machine design over 

noisy images

Error = 0.65%

Human design after 

restoration

Error = 0.27%

Machine design  after 

restoration

Error = 0.24%

Noise Edge DetectionNoise Edge Detection



Envelope multiEnvelope multi--resolution resolution 

constraintconstraint



7777

Definition

♦ W1 ⊂ W0 , ρ:D0 → D1 is a resolution mapping

♦ α, β: D1 → {0,1} with α ≤ β

♦ ψ : D0 → {0.1}

♦ ψρ = (ψ ∧ β’) ∨ α’ , α’(x) = α(r(x))  and β’(x) = β(r(x))









=

=

=

otherwhise

xif

xif

)(

0))((0

1))((1

)(

x

x

ψ

ρβ

ρα

ψ ρ
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ψρ

QD0

φenv

β

α

D1

φ

Definition

Ψφ

β’

α’
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Teorema

ψ

ψρ

Q

D0

D1

φenv

β

α

φ

β’

α’
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Piramidal Design:

Let ψi,env,N = ( ψi,N ∧ β’) ∨ α’, be the projection of the resolution

constrained filter inside the envelope (α’, β’)

ψ

ψ

ψ ρ

ψ ρ ρ

ψ ρ ρ

env mres

N

env N

m env N m m

m env N m m

if N

if N N

if N N N

if N N N

−

− − −

−

=

>

= >

= = >

= = >














( )

( ) ( )

( ) ( ) , ( ( ))

( ) ( ) ,..., ( ( )) , ( ( ))

( ) ( ) ,..., ( ( )) , ( ( ))

,

, ,

, ,

, ,

x

x x

x x x

x x x x

x x x x

0

1 1

1 2 1

1

0

0 0

0 0 0

0 0 0

M
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Properties:

♦ ψenv-mres is a consistent estimator of ψopt

♦ If the envelope is well defined on D1, then the ρ-envelope of a 

resolution constrained filter is advantageous
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α = εB(γEφEγE) 

β = δB(φEγEφE)

EB
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GrayGray--scale operator design: scale operator design: 

apertureaperture
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Spatial Translation Invariance
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Gray-scale Translation Invariance
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( ) ( ) )(/)( xWfxf xΨ=Ψ

Locally defined in W
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}},)(,{{))(/( kyzukzKu y −−∨∧=

Locally defined in W and K
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-2 1 2 2 2

-2 1 2 2 2

-2 1 1 1 1

-2 -2 -2 -2 -2
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-1
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ψβ

Aperture Operator

W { }2,1,0,1,2 −−=K
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-2 1 2 2 2

-2 1 2 2 2

-2 1 2 2 2

-2 1 1 1 1

-2 -2 -2 -2 -2

-2 -1 0 1 2

2
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-1
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ψ

12 13 14 15 16
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12 13 14 14 12
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=
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+

)(ou ψβ

2 2 2 2 2

2 2 2 2 1

2 2 2 1 -2

2 2 1 -2 -2

2 1 -2 -2 -2

10 11 12 13 14

14

13

12

10

11

Aperture 
Operator
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�� Let Let a, ba, b ∈∈ Fun[Fun[W,LW,L]], , aa ≤≤ bb iffiff aa((xx) ) ≤≤ bb((xx), ), x x ∈∈ WW

�� Interval Interval [[aa,,bb] = {] = {uu ∈∈ Fun[Fun[W,LW,L]:]: aa ≤≤ uu ≤≤ bb}}

a

b|W| = 2
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�� SupSup--generating operator:generating operator:
( ) ],[1, bauuba ∈⇔=λ

0 0 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 0 0 0

[a,b]

ba ,λ
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Kernel of ψ at y: K(ψ)(y) = {u ∈ Fun[W,L]: y ≤ ψ(u)}

0 1 2 2 2

0 1 2 2 2

-1 1 2 2 2

-1 1 1 1 1

-2 -1 -1 -1 -1

K(ψ)(2)K(ψ)(-1) K(ψ)(0) K(ψ)(1)K(ψ)(-2)

-2 -1 0 1 2

2

1

0

-1

-2
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Basis of ψ at y: B(ψ) is the set of maximal intervals contained in K(ψ)

K(ψ)(2)K(ψ)(-1) K(ψ)(0) K(ψ)(1)K(ψ)(-2)

B(ψ)(2)B(ψ)(-1) B(ψ)(0) B(ψ)(1)B(ψ)(-2)
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SupSup--representationrepresentation

( ) { }{ }1))((],[:)(: , =∈∈= yBbauMyu ba ψλψ UU

K(ψ)(2)K(ψ)(-1) K(ψ)(0) K(ψ)(1)K(ψ)(-2)

ψ(-1,-1) = 1
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These are part of the observed and ideal images (512x512)

Observed Ideal
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MAE x Number of ExamplesMAE x Number of Examples



9898

DebluringDebluring -- Aperture x Optimal Aperture x Optimal 

linearlinear

Aperture 17p x 5 x 5 Optimal linear 7x7
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Resolution Enhancement
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Resolution Enhancement

(0,0) (0,1)

0Ψ

3Ψ

2Ψ

3Ψ

1Ψ
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Original Aperture: 3x3x21x51

Linear Bilinear

Resolution Enhancement - Results
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Original Aperture: 3x3x21x51

Linear Bilinear

Zoom

Resolution Enhancement - Results



GrayGray--scale operator design:scale operator design:

stack filtersstack filters
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A stack filter is a gray-scale operator characterized

by a positive (i.e., increasing) Boolean function

}1])[(:max{)( =∈= fTKtf tψψ

where

})(:{][ txfWxfTt ≥∈=
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Impulse noise removal Impulse noise removal (1)(1)

training images
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Impulse noise removal Impulse noise removal (2)(2)

test image iteration 1
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Impulse noise removal Impulse noise removal (3)(3)

test image iteration 5
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Robustness Robustness (1)(1)

test image iteration 1
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Robustness Robustness (2)(2)

test image iteration 5
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Conclusion Conclusion 

�� Design of Morphological Operators:Design of Morphological Operators: a a 

discrete nature problemdiscrete nature problem

�� Fundamentals: Fundamentals: Algebra, Statistics, Algebra, Statistics, 

CombinatoryCombinatory

�� Real problemsReal problems solutionsolution

�� Design techniques Design techniques adequate to introduce adequate to introduce 

prior knowledgeprior knowledge

�� Identification of Lattice Dynamical Systems Identification of Lattice Dynamical Systems 


