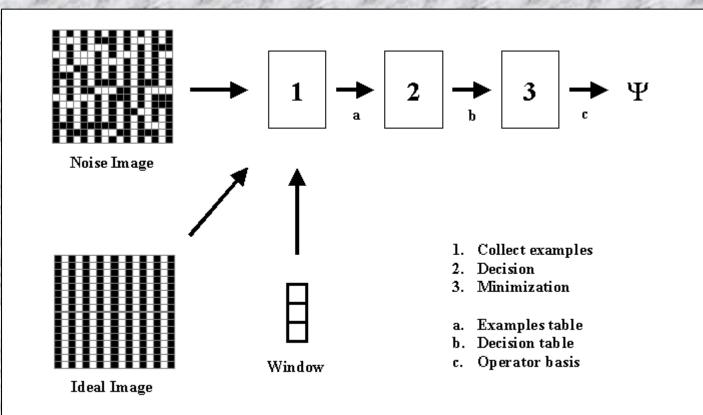
Boosting OCR Classifier by Optimal Edge Noise Filtering

Junior Barrera Marcel Brun Routo Terada

Universidade de Sao Paulo, Departamento de Ciencia da Computaçao

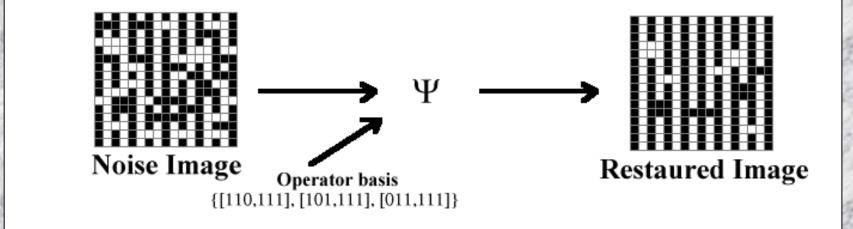

Edward Dougherty

Texas A&M University, Departament of Electrical Engineering

Outline

- Operator Design
- Character Normalization
- Problems in resolution reduction
- Anchoring
- Edge Noise Filtering
- Experimental Results
- Conclusions

Operator Training


Complete scheme

Operator Training

$x_1 x_2 x_3$	Frequency of 0	Frequency of 1	$\mathbf{x_1 x_2 x_3}$	h(x)
000	86	0	000	0
001	19	2	001	0
010	18	0	010	0
011	1	16	011	1
100	19	2	100	0
101	0	14	101	1
110	1	16	110	1
111	0	78	111	1
	а			b

Collect and decission

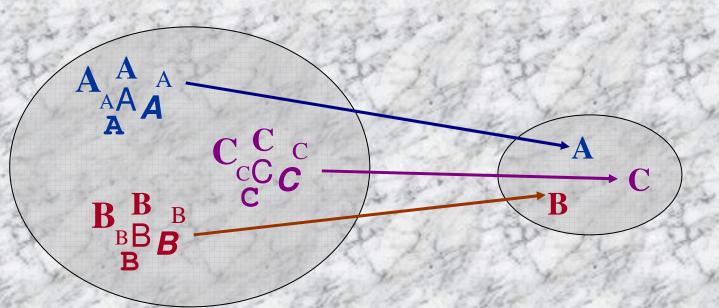
Operator Training

Application

Classification steps

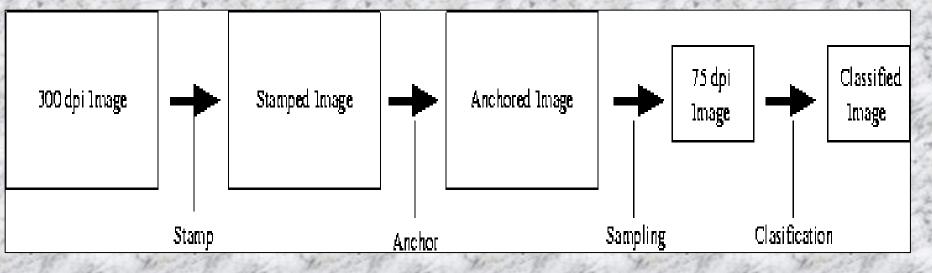
quantos esta publica escritura virem que, no ano da Era Cristã, de mil novecentos e noventa e oito (1.998), ao DEZESETE (17) dia do mês de NOVEMBRO, nesta cidade de São Paulo, em meu Cartório, perante mim, Tabelião, compareceram partes entre si, justas e contratadas, outorgantes e

Binary Image


Cristã, de mil novecentos e noventa e oito (1.998), ao DEZESETE (17) dia do mês de NOVEMBRO, nesta cidade de São Paulo, em meu Cartório, perante mim, Tabelião, compareceram partes entre si, justas e contratadas, outorgantes e

Labeled Image

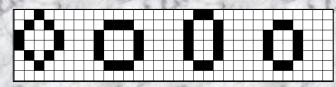
quantos esta publica escritura virem que, no ano da Era Cristã, de mil novecentos e noventa e oito (1.998), ao DEZESETE (17) dia do mês de NOVEMBRO, nesta cidade de São Paulo, em meu Cartório, perante mim, Tabelião, compareceram partes entre si, justas e contratadas, outorgantes e


Classified Image

Character Normalization

Normalizing characters, the work of differentiate them becomes easier

Character Normalization

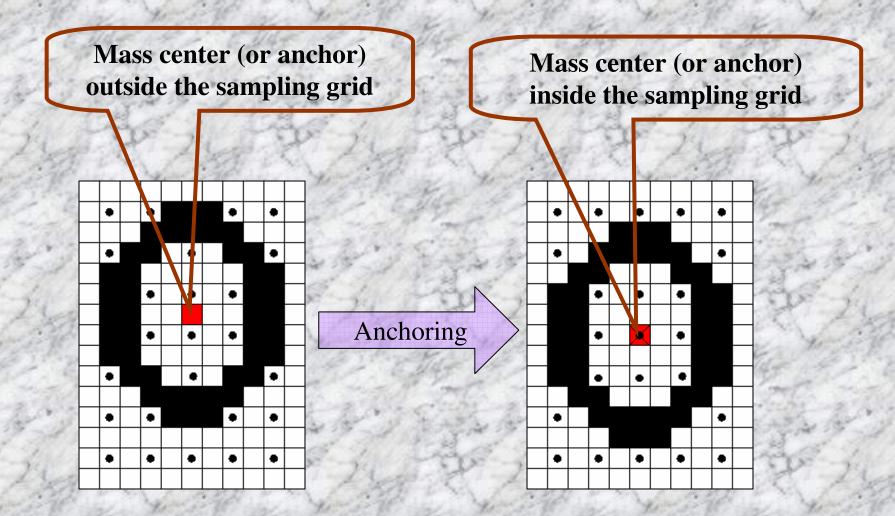

Normalisation Diagram

- The complexity grows with the windows W
- Anchoring \Rightarrow • Stamp \Rightarrow
- Decrease image resolution Normalise characters shape

Problems in resolution reduction

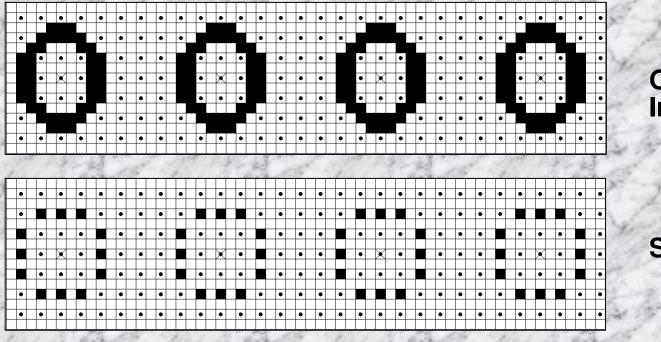
• Objets with same shape, at differents positions may turn into differents shapes at low resolution.

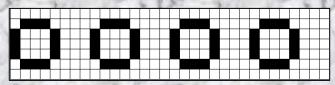
																													1	1		
							_		_	_	+					+		+														_
•	٠		٠	•	•	•	•	•	•		•	٠	•	•	•	<u> </u> •	• •	<u>' </u>	•			•	•	•	•	•	•	•		٠	•	•
•		٠		•	•	•	•	•					•	•						•	•		•	-	•	•	•				•	•
-		•		•	-	-	-	-					•		<u>' </u> •	++				•	•					•	•				Ŀ	-
_	•	•	•	-	•	•	•		٠		•	•		•						•	•		•	•	•	•		•		•		•
		\square																													-	
	۰	•	•		•	•	•		٠	•	X	•			•		•			•	•		•	•	•	٠			X	•		٠
																															_	
٠		٠		•	•	•	•		•	•	•	٠		•	•	<u> </u>	• •			•	•		•	•	•	•		•		•		•
•	•		•	•	•	•	•	-					•	•		+			•			•	•	-	•	•	•				•	•
-			•		-	-	-	-					•		<u>' </u> •	<u>' </u>		<u>' '</u>	•			•				•	•					-
	•	•	•	•	•	•	•	•	•		•	•	•	•					•	•	•	•	•	•		•	•			•	•	•
-	-																															+
100	50	10		10	1		1		-5				100	0.0		-		199	1			10	$C^{(n)}$		1		197	0.1	ς.	670	6.12	100
27		Y	23	a l	5	24		3	1	2		12	1	1	-	d.	3	17	92	2		9	6	1	2	3	17	22	1	12	2	P.
1		2	2		2	3		2	1	2		12.	C.W.S	2	1	1	3		2	1	2	1000		di		3	17	2		12		Ę
•		1	•	•		•		•		•	•	•	•					, ,	•			•	•		•	•	•	•		•		Ð
•	•		•	•	•	•	•	•	•	•	•	•	•	•			•	•	•			•	•	•	•	•	•	•		•	•	Þ
•	•		•	•	•	•	•	•	•		•	•	•	•						•	•	•	•	•	•	•	•	•		•	•	
					•	•	•							•	•	•	•	•			•	•	•	•	•	•	-					•
	•		•		-				•		•	•			•	•		•				•				-	-	•				
	•	•	•		•	•	•		•		•	•		•			• •			•	•	•	•	•	•	•	-	•		•		•
					•	•	•							•			• •			•	•	•	•	•	•	•	-	•				•
	•	•	•		•	•	•		•		•	•		•			• •			•	•	•	•	•	•	•	-	•		•		•
•	•	•	•		•	•	•		•		•	•		•						•	•		•	•	•	•	-					•
•	•	•	•		•	•	•		•		•	•		•						•	•		•	•	•	•	-					•
	•	•	•	•	•	•	•		•		•	•	•	•						•	•		•	•	•	•	•					•
	•	•	•	•	•	•	•		•		•	•	•	•						•	•		•	•	•	•	•					•



Original Image

Sampling

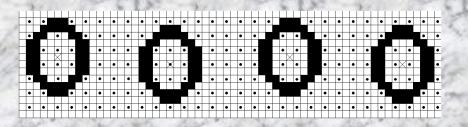

Shrinking


Anchoring

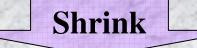
Anchoring

It consist of traslating the mass center of each object over the low resolution grid

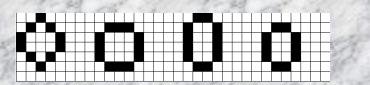
Original Ancored Image


Sampling

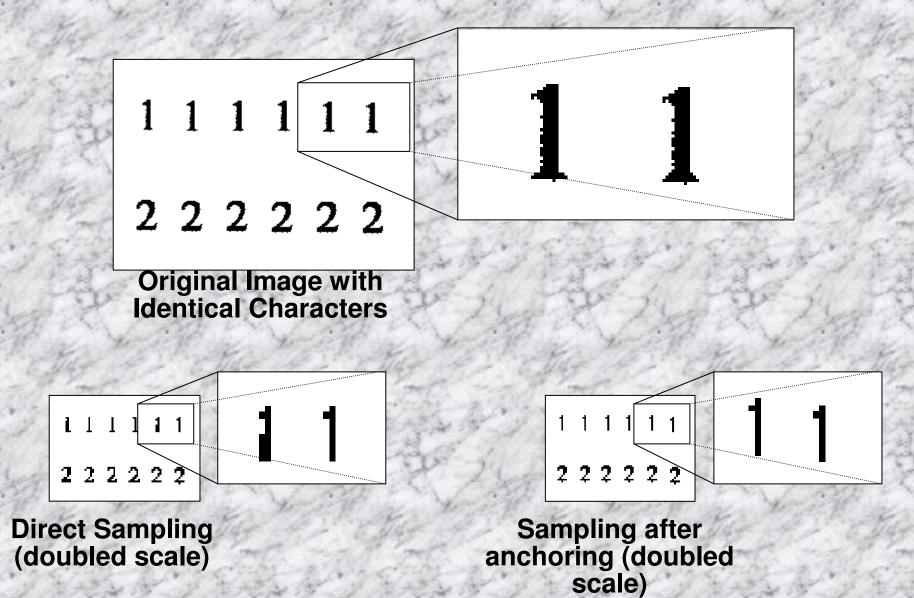
Shrinking

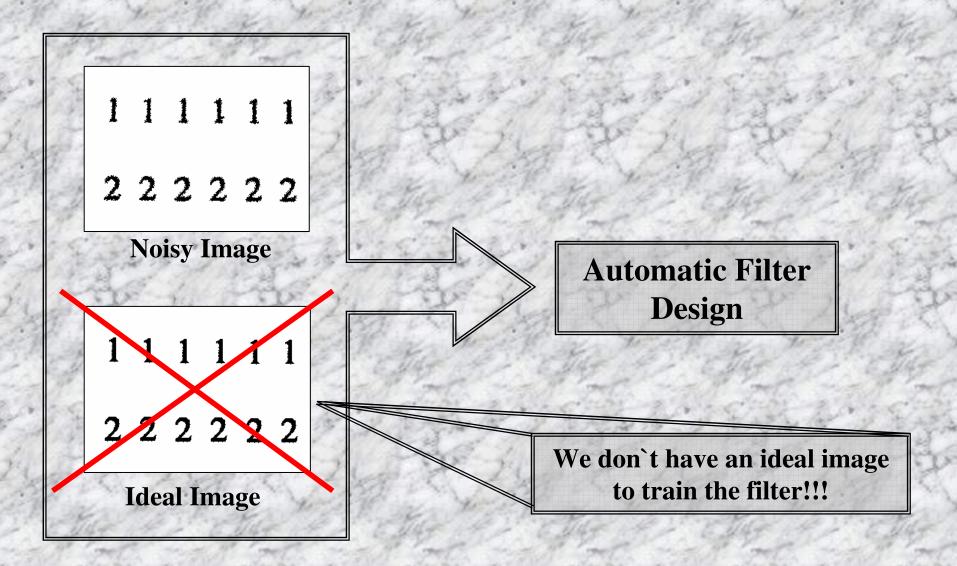

Anchoring - Comparation

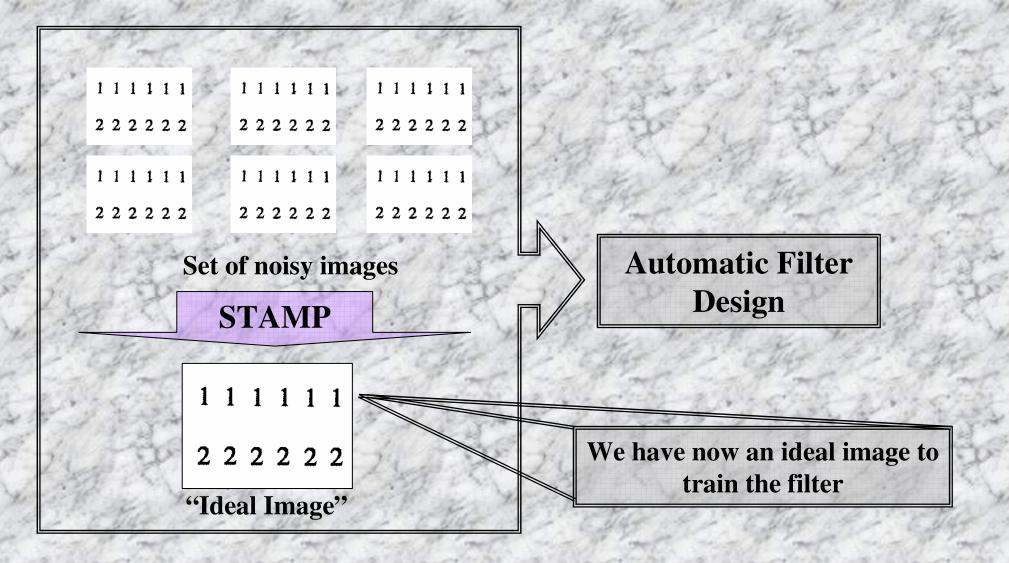
Witouth Anchor

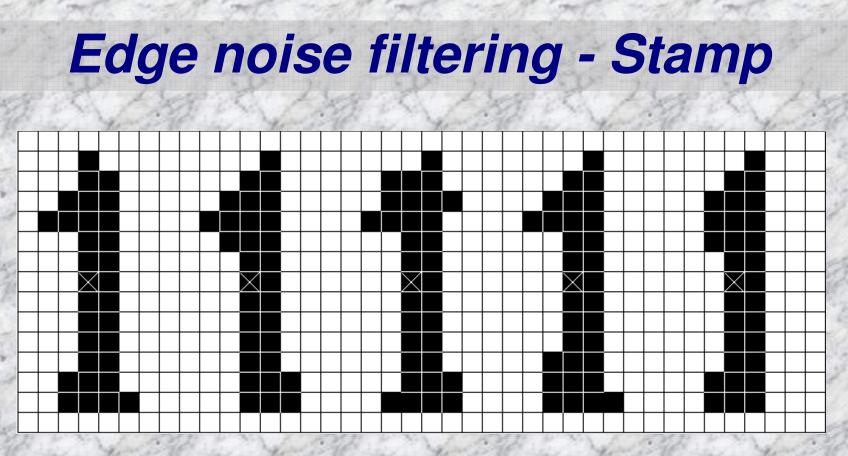

With Anchor

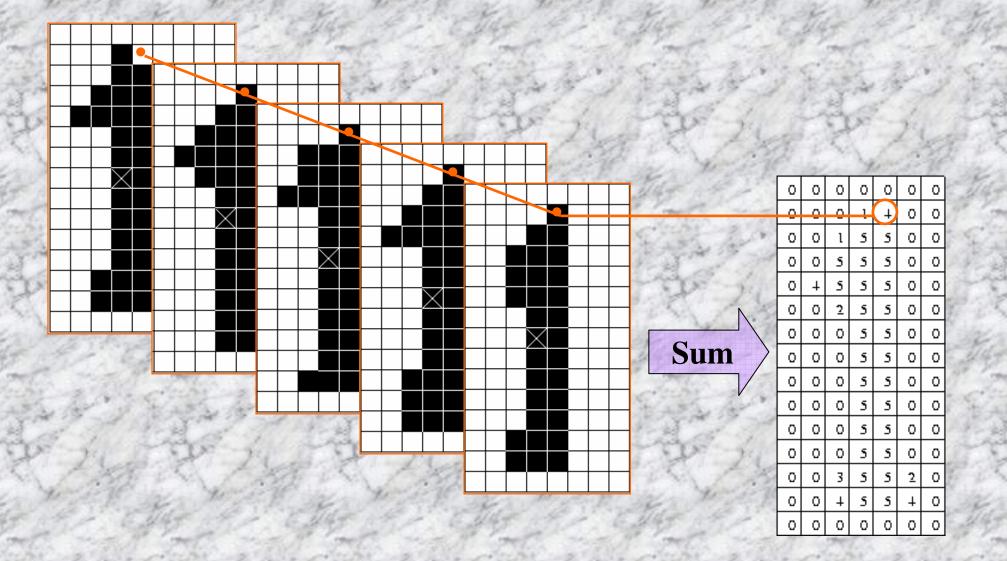
- I-	•					•	٠		•	1	•						٠	•	•	•	٠	٠					•	•	٠	•	•	•						•	•
		٠	٠	•	•		•		•		•		٠	•	-			٠		•	٠			•	٠	٠		•	٠	•			٠		•	•			
		٠	x	•			•		•	1	•		٠	×	1	•		•	-	•	٠			•	X	٠		•	٠	•			٠	1	X	•			•
			7							+				1	+				+						r				1					\square					
		٠	•	•			•	+	•	1	•		٠	•	-	•		•	-	•	٠				•			•		•			٠	1	•	•			•
	•					٠	٠		•		•						٠	٠		•	٠	٠					٠	•	٠	•								٠	
H												1					1																						
	•	٠	٠	•	•	٠	•		•		•		٠	•		•	٠	•		•	٠	•	•		٠	•		•	٠	•		•			٠	•	1	٠	
H					+							1					1			-												+							

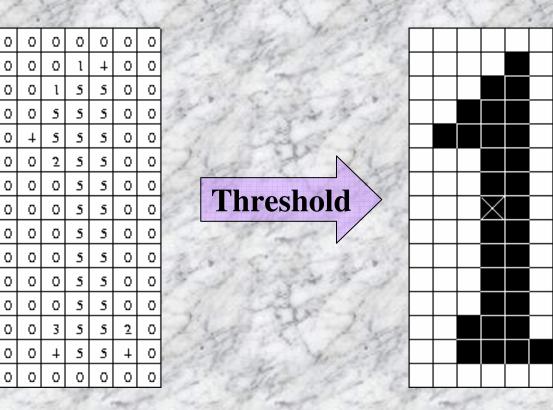


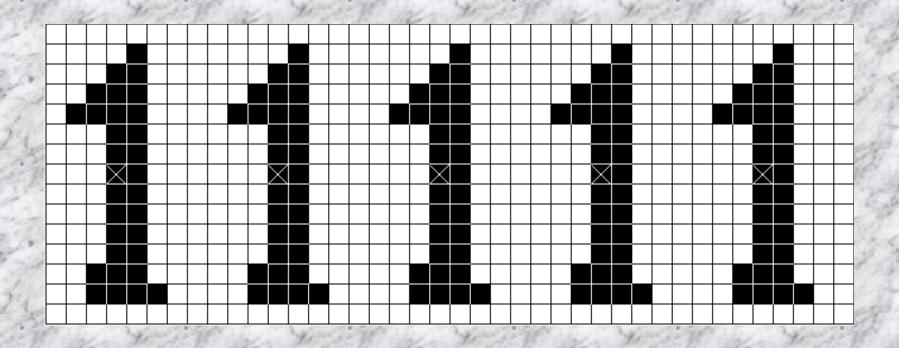




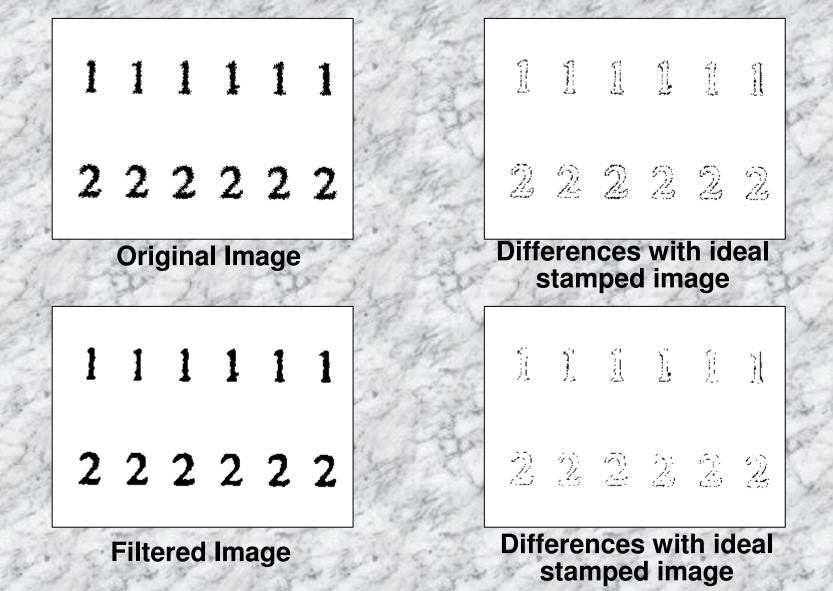

Anchoring - Example


Edge noise filtering





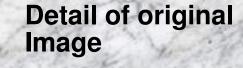
- 5 edge noise realizations of the number "one"
- From they we want to obtain a good almost "ideal" number "one"
- For this, we mark the mass center of each digit (here showed with a cross)



- With a threshold (chosen as half the number of digits) we obtain the "ideal" digit "one".
- The cross indicates the center of the windows containing it (that may be different of the mass center)

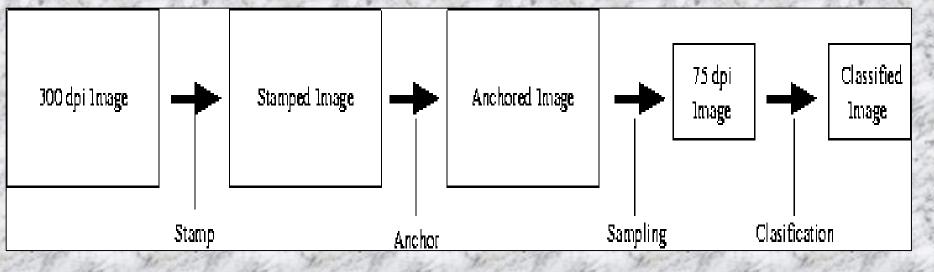
- Each digit is replaced by the "ideal" digit, matching the centers (cross)
- Whit this image and the noisy original image, we have the training pair to automatically project the filter

Edge noise filtering - Example



Edge noise filtering - Example

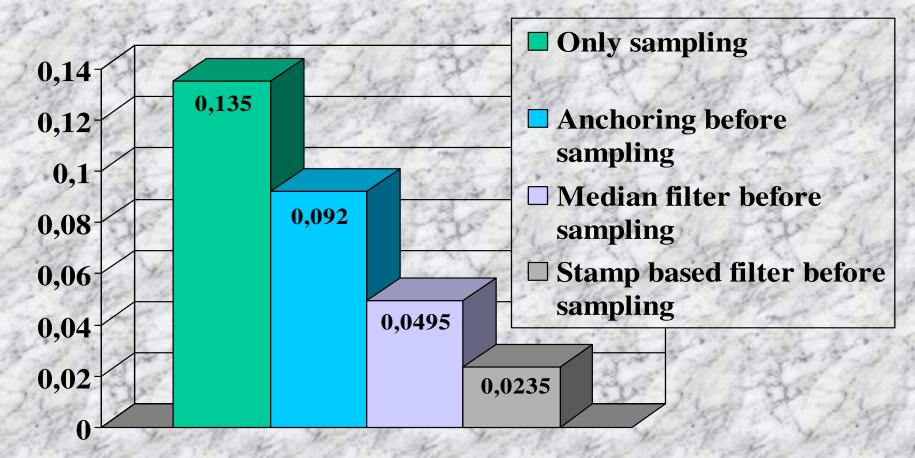
22


22

Detail of ideal stamp

Detail of application of the stamp based noise edge filter

Full sequence



Normalisation Diagram

- The complexity grows with the windows W
- Anchoring \Rightarrow
- Decrease image resolution Normalise characters shape
- Stamp \Rightarrow Normalise characters shape

Experimental Results

Errors Graphs (%)

Conclusion

- We changed the problem of designing sophisticated shape classifier into one of designing simple classifiers for filtered images
- Correct classification were from 86.5% to 90.8% using anchoring thecnique
- After filtering, the values dropped to about 97%
- The goal of the filter is character normalization, and this is exactly modeled by indempotent operators
- The next priority of our research on this subject is the development of a technique for the design of indempotent operator

Aknowlodgements

- The authors have received partial support from
 - · FAPESP and
 - · CNPq.
- The authors also thanks the students
 - Teofilo E. Campos
 - Rogerio Feris
 - · Archias A. de A. Filho
 - Franklin C. Flores and
 - · Fabiano C. Sousa

that have developed part of the software used in the paper