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Learning a concept

� Domain: planar shapes

� concept: color RED
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Terminology

� domain: objects with a random 
distribution

� concept: a set of objects of a given 
domain (or a binary function)

� teacher: he says if a generic object 
satisfies the concept, but he may make 
mistakes



Terminology

� example: an object classified by the 
teacher

� learning algorithm: gives an hypothesis 
for the concept from a collection of 
examples 

� training data: examples used in the 
learning algorithm
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The optimization problem

][ψEr

is a classifier on a random domainψ

is the error of ψ

optψ is a classifier of minimum error

Ψ∈∀≤ ψψψ ],[][ ErEr opt



Error measure

Loss function

Risk (expected loss) of a function :

Design goal is to find a function
with minimum risk.

X is a random set

Y  is a binary random variable



Join probability
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Optimal MAE function

Example :  MAE  loss function
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MAE example



Generalization

OBSERVED

GENERALIZED



PAC learning

L is Probably Approximately Correct (PAC)

For                  examples ),( δεmm >
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Efficiency

L should be computed in polynomial time

should be represented in polynomial 
storage space

ψ

should be executed in polynomial timeψ



PAC learning procedure

1. Estimate P(X,Y) from training images

2. Attribute the binary label that minimizes the loss, 
for each observed shape

3. Make representation simplification (e.g., compute 
base), and attribute labels to non-observed shapes 
(generalization or prediction).

Example : Boolean function minimization, 
where non-observed shapes may be regarded as 
don’t cares for minimization purpose.



Representation
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Pictorial representation

1

11

1

dark    =  1
white  =  0

Simplified representation



Minimization by

Quine-McCluskey



ISI (incremental splitting of intervals)

Interval :

Splitting of [A,B] by X,



ISI algorithm



The problem

Find an image operator that transforms the 
observed image to the  respective  ideal 

(or “close to the ideal”) image.

observed ideal



Binary image operators

Binary image :

Binary images can be understood as sets :

is a complete Boolean lattice

Binary image operators  =  set operators : 



Translation invariance

translation-invariant iff

Translation of S by z :

is



Local definition

An image operator is  locally defined within       iff

Window :



W-operators

Translation invariance 
+

local definition within    
=

-operators

z

W-operators are characterized by Boolean functions.



Statistical Hypothesis

X and Y are jointly stationary

),( YWSP z∩

is the same for any z in E



Stationary Process



Join Stationary Process



Design procedure

Uses

training data

learning technique



Edge detection

Test images

Training images



Noise

filtering

Training images

Test images



Noise removal

Training images Test images



Texture extraction (1)

Training images



Texture extraction (2)

Test images



Example

Training images Test images
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3,13 %
2,68 %

2,21 %
2,01 %

1,82 %
1,69 % 1,60 %

Ruído 1 Treino 2 Treinos 3 Treinos 8 Treinos 13 Treinos 25 Treinos 32 Treinos

Última Imagem

Amount of data available



Distribution

aditivo: 3%

subtrativo: 3%

aditivo: 6%

subtrativo: 6%

aditivo: 2%

subtrativo: 1%



aditivo: 2%

subtrativo: 1%

padrões distintos : 140.060

em 1.548.384

aditivo: 3%

subtrativo: 3%

padrões distintos : 266.743

em 1.548.384

aditivo: 6%

subtrativo: 6%

padrões distintos : 487.494

em 1.548.384

window 5x5, 6 training images



Size of the window

Taxa de erro en função do tamanho da janela
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Size of the window
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Difficulties

The space of W-operators is VERY large.

Consequences :

Large amount of data (training images) are required for
a good estimation of these parameters

Learning algorithm complexity increases



x1 x2 p(-1,x1,x2) p(0,x1,x2) p(1,x1,x2) p(x1,x2) y Error

-1 -1 0.05 0.1 0.05 0.2 0 0.1

-1 0 0.03 0.03 0.04 0.1 1 0.06

-1 1 0.02 0.01 0.07 0.1 1 0.03

0 -1 0.01 0.01 0.03 0.05 1 0.02

0 0 0.03 0.01 0.01 0.05 -1 0.02

0 1 0.07 0.1 0.03 0.2 0 0.1

1 -1 0.04 0.06 0.1 0.2 1 0.1

1 0 0.03 0.01 0.01 0.05 -1 0.02

1 1 0.02 0.02 0.01 0.05 -1 0.03

0.48

Difficulties

Ideal design



x1 x2 p(-1,x1,x2) p(0,x1,x2) p(1,x1,x2) p(x1,x2) y Error

-1 -1

-1 0

-1 1 0.02 0.01 0.07 0.1 1 0.03

0 -1

0 0 0.03 0.01 0.01 0.05 -1 0.02

0 1

1 -1 0.04 0.06 0.1 0.2 1 0.1

1 0

1 1

Difficulties

Real design



1 1

0 -1

-1 1

-1 0 1

g3 = f(g1,g2)

g1

g2

Difficulties

Generalization



Constraints

Structural Constraints

- impose maximum number of elements in the basis

- use alternative structural representations
(e.g.,  sequential)

Algebraic constraints

- consider class of operators satisfying a given 
algebraic property  (e.g., increasingness , 
idempotence, auto-dualism, etc)



Structural Constraint :

iterative design (1)

is  a -operator

Motivation : composition of operators over small 
windows produces an operator over a larger window



Iterative design procedure

First iteration

Second iteration

Successive application

of the single iteration

design procedure



Application example

test image

iteration 1

iteration 2



Application example

iteration 1

iteration 2

test image



Application example

test image iteration 1

iteration 4 iteration 5 iteration  6

iteration 2 iteration 3



Application example

test image

iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6



Application example

test image

iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6



Algebraic constraints

Design of operators based on 
the switching approach

estimate optimal W-operator

switch value of the optimal W-operator in such 
a way that the resulting operator satisfies the 
algebraic constraint



Algebraic constraints

Increasing W-operators

increasing non-increasing



Switching approach

increasing

increasing

non-increasing

Design of increasing W-operators



Only inversion set elements

need to be switched.

Switching may increase risk

Goal : find switching that minimizes overall 

risk increase

There exists a switching cost

(amount of risk increase due

to the switching) for each element

in the inversion set.

Switching approach

Inversion set



Switching       Partition

Inversion set After switching partition

upper

lower



Partition       Switching

Inversion set Implied switchingpartition

upper

lower



Example
Inversion set

Result



aditivo: 2%

subtrativo: 2%



Hierarchical clustering

Shapes



Hierarchical clustering



Hierarchical clustering



Hierarchical clustering



Gray-scale image operators

Gray-scale image :

Gray-scale image operator :

Characteristic function :

Same design procedure could be applied

Computationally much more hard !!

Design of gray-scale W-operators



Impulse noise removal (1)

training images



Impulse noise removal (2)

test image iteration 1



Impulse noise removal (3)

test image iteration 5



Robustness (1)

test image iteration 1



Robustness (2)

test image iteration 5



Stack filter x median (1)

Median 5x5iteration 5



Stack filter x median (2)

iteration 5 5x5 median



Motion Tracking



Motion Tracking



Motion Tracking



Conclusion

� A powerful tool to solve practical problems

� Hard problems requires modeling of prior 
knowledge

� Prior knowledge modeling implies complex 
problems in Statistics, Algebra and 
Combinatory


