Computational Learning Design of image operators

Junior Barrera
Nina S. T. Hirata
Marcel Brun

Instituto de Matemática e Estatística
University of São Paulo - Brazil

Outline

Computational learning

Design of W-operators
Amount of data available
Distribution of the domain
Size of the window
Constraints
Gray scale and motion applications
Conclusion

Learning a concept

Domain: planar shapes

- concept: color RED

Red Other

Learning a concept

Red Other

Terminology

\| domain: objects with a random distribution

- concept: a set of objects of a given domain (or a binary function)
II teacher: he says if a generic object satisfies the concept, but he may make mistakes

Terminology

II example: an object classified by the teacher

- learning algorithm: gives an hypothesis for the concept from a collection of examples
II training data: examples used in the learning algorithm

The optimization problem

The optimization problem

$\boldsymbol{\psi}$ is a classifier on a random domain
$\operatorname{Er}[\psi]$ is the error of ψ
$\psi_{o p t}$ is a classifier of minimum error

$$
\operatorname{Er}\left[\psi_{o p t}\right] \leq \operatorname{Er}[\psi], \forall \psi \in \Psi
$$

Error measure

\Rightarrow Design goal is to find a function with minimum risk.
\Rightarrow Risk (expected loss) of a function :

$$
R(\psi)=E[l(\psi(X), Y)]
$$

\Rightarrow Loss function

$$
l:\{0,1\} \times\{0,1\} \rightarrow R^{+}
$$

Join probability

$$
R(\psi)=\sum_{X, Y} l(\psi(X), Y) p(X, Y)
$$

$p(X, Y)$ needs to be estimated from training data

MAE example

\Rightarrow Example: MAE loss function

$$
\begin{aligned}
& l_{M A E}(a, b)=|a-b| \quad a, b \in\{0,1\} \\
& M A E\langle\Psi\rangle=E[|\psi(X)-Y|]
\end{aligned}
$$

\Rightarrow Optimal MAE function

$$
\psi(X)= \begin{cases}1 & p(1, X)>p(0, X) \\ 0 & p(1, X) \leq p(0, X)\end{cases}
$$

Generalization

OBSERVED

GENERALIZED

PAC learning

L is Probably Approximately Correct (PAC)

For $\quad m>m(\boldsymbol{\varepsilon}, \boldsymbol{\delta})$ examples

$$
\operatorname{Pr}\left(\left|R(\psi)-R\left(\psi_{o p t}\right)\right|<\varepsilon\right)>1-\delta
$$

$$
\varepsilon, \delta \in(0,1)
$$

Efficiency

L should be computed in polynomial time

ψ should be represented in polynomial storage space
ψ should be executed in polynomial time

PAC learning procedure

1. Estimate $P(X, Y)$ from training images
2. Attribute the binary label that minimizes the loss, for each observed shape
3. Make representation simplification (e.g., compute base), and attribute labels to non-observed shapes (generalization or prediction).

Example : Boolean function minimization,
where non-observed shapes may be regarded as don't cares for minimization purpose.

Representation

Window $W=1 \times 3$

$\mathcal{K}(\Psi)=\{\square \square, \square \square, \square \square, \square \square\}$
$\mathcal{B}(\Psi)=\{\underset{\mathrm{x} 11}{[\square \square, \square \square]} \underset{1 \mathrm{x} 0}{\square \square, \square \square]}, \underset{11 \mathrm{x}}{\square \square, \square \square]}\}$

$$
\psi=\lambda_{X 11} \cup \lambda_{1 X 0} \cup \lambda_{11 X}
$$

Pictorial representation

Simplified representation

dark $=1$
white $=0$

ISI (incremental splitting of intervals)

\Rightarrow Interval : $[A, B] \subseteq \mathcal{P}(W)$
\Rightarrow Splitting of $[A, B]$ by $\mathbf{X}, X \in[A, B]$
$[A, B] \backslash X=\left\{\left[A, B \cap\{a\}^{c}\right]: a \in P \cap A^{c}\right\} \cup\left\{[A \cup\{b\}, B]: b \in P^{c} \cap B\right\}$

ISI algorithm

The problem

ABCQEFCHIT		AbCDEFGHIJ
LLMMOPQRT		KLMNOPQR
TUYEZMY	$\underline{\Psi}=$?	TUVXZWY
abctefmghme		abcdefghijklm
nopquetramy		nopqrstuxizwy
\%		
observed		ideal

Find an image operator that transforms the observed image to the respective ideal (or "close to the ideal") image.

Binary image operators

\Rightarrow Binary image : $\quad f: E \rightarrow\{0,1\}$
Binary images can be understood as sets :

$$
\begin{gathered}
f \longleftrightarrow S \\
x \in S \Leftrightarrow f(x)=1 \quad \forall x \in E
\end{gathered}
$$

$(\mathcal{P}(E), \subseteq) \quad$ is a complete Boolean lattice
\Rightarrow Binary image operators = set operators:

$$
\Psi: \mathcal{P}(E) \rightarrow \mathcal{P}(E)
$$

Translation invariance

\Rightarrow Translation of S by z :

$$
S_{z}=\{x+z: x \in S\}
$$

$\{\Psi: \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ is
\Rightarrow translation-invariant iff $\Psi\left(S_{z}\right)=[\Psi(S)]_{z}$

Local definition

Window : $W \subseteq E$

An image operator is locally defined within W iff

$$
x \in \Psi(S) \Longleftrightarrow x \in \Psi\left(S \cap W_{x}\right)
$$

W-operators

$\Rightarrow\left\{\begin{array}{c}\text { Translation invariance } \\ + \\ \text { local definition within } W \\ = \\ W \text {-operators }\end{array}\right.$

W-operators are characterized by Boolean functions.

Statistical Hypothesis

\mathbf{X} and Y are jointly stationary

$$
P\left(S \cap W_{z}, Y\right)
$$

is the same for any \mathbf{z} in E

Stationary Process

Join Stationary Process

Design procedure

Uses
training data learning technique

Edge detection

Training images

Test images

Noise filtering

Training images

Test images

Noise removal

> ABCDEFGHIJ
> KLMNOPQRS TUYKZWY abcdefghijklm nopqrstuvxzwy

$$
\begin{aligned}
& \text { ABCDEFGHIJ} \\
& \text { MLAIGOPQRs } \\
& \text { TUYXewy } \\
& \text { abcdeighijutm } \\
& \text { nopqratuvxawy }
\end{aligned}
$$

Test images

Texture extraction (1)

Training images

Texture extraction (2)

Test images

Example

Training images

Test images

Distribution

aditivo: 2\% subtrativo: 1\%

aditivo: 3\%
subtrativo: 3\%

aditivo: 6\% subtrativo: 6\%

window $5 \times 5,6$ training images
aditivo: 2\%
subtrativo: 1\%
padrões distintos : 140.060 em 1.548.384

aditivo: 3\%
subtrativo: 3\%
padrões distintos : 266.743
em 1.548.384
aditivo: 6\%
subtrativo: 6\%
padrões distintos : 487.494
em 1.548.384

Size of the window

Size of the window

Size of the window

Difficulties

The space of W-operators is VERY large.
$\Rightarrow|W|=n \Longrightarrow \begin{cases}2^{2^{n}} & W \text { operators, } \\ 2^{n} & \text { conditional probabilities to be estimated }\end{cases}$
\Rightarrow Consequences:

- Large amount of data (training images) are required for a good estimation of these parameters
- Learning algorithm complexity increases

Difficulties

x 1	x 2	$\mathrm{p}(-1, \mathrm{x} 1, \mathrm{x} 2)$	$\mathrm{p}(0, \mathrm{x} 1, \mathrm{x} 2)$	$\mathrm{p}(1, \mathrm{x} 1, \mathrm{x} 2)$	$\mathrm{p}(\mathrm{x} 1, \mathrm{x} 2)$	y	Error
-1	-1	0.05	0.1	0.05	0.2	0	0.1
-1	0	0.03	0.03	0.04	0.1	1	0.06
-1	1	0.02	0.01	0.07	0.1	1	0.03
0	-1	0.01	0.01	0.03	0.05	1	0.02
0	0	0.03	0.01	0.01	0.05	-1	0.02
0	1	0.07	0.1	0.03	0.2	0	0.1
1	-1	0.04	0.06	0.1	0.2	1	0.1
1	0	0.03	0.01	0.01	0.05	-1	0.02
1	1	0.02	0.02	0.01	0.05	-1	0.03
							0.48

Ideal design

Difficulties

x 1	x 2	$\mathrm{p}(-1, \mathrm{x} 1, \mathrm{x} 2)$	$\mathrm{p}(0, \mathrm{x} 1, \mathrm{x})$	$\mathrm{p}(1, \mathrm{x} 1, \mathrm{x} 2)$	$\mathrm{p}(\mathrm{x} 1, \mathrm{x} 2)$	y	Error
-1	-1						
-1	0						
-1	1	0.02	0.01	0.07	0.1	1	0.03
0	-1						
0	0	0.03	0.01	0.01	0.05	-1	0.02
0	1						
1	-1	0.04	0.06	0.1	0.2	1	0.1
1	0						
1	1						

Real design

Difficulties

Constraints

\Rightarrow Structural Constraints

- impose maximum number of elements in the basis
- use alternative structural representations (e.g., sequential)
\Rightarrow Algebraic constraints
- consider class of operators satisfying a given algebraic property (e.g., increasingness , idempotence, auto-dualism, etc)

Structural Constraint : iterative design (1)

\Rightarrow Motivation : composition of operators over small windows produces an operator over a larger window

$\Rightarrow \Psi=\Psi_{2}\left(\Psi_{1}\right)$ is a $W \oplus W$-operator

Iterative design procedure

First iteration
\Rightarrow Successive application of the single iteration design procedure

Second iteration

Application example

test image

iteration 1

iteration 2

Algebraic constraints

Design of operators based on the switching approach

- estimate optimal W-operator
- switch value of the optimal W-operator in such a way that the resulting operator satisfies the algebraic constraint

Algebraic constraints

Increasing \boldsymbol{W}-operators

$$
x \leq y \Rightarrow \psi(x) \leq \psi(y)
$$

increasing

non-increasing

Switching approach

Design of increasing \boldsymbol{W}-operators

non-increasing

Switching approach

Inversion set

\Rightarrow Only inversion set elements need to be switched.
\Rightarrow Switching may increase risk
There exists a switching cost (amount of risk increase due to the switching) for each element in the inversion set.
\Rightarrow Goal : find switching that minimizes overall risk increase

Switching \longrightarrow Partition

Inversion set

After switching

Partition \longrightarrow Switching

Inversion set

partition

Implied switching

Example

Inversion set

aditivo: 2%
subtrativo: $\mathbf{2 \%}$

Hierarchical clustering

Shapes

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Gray-scale image operators

\Rightarrow Gray-scale image : $f: E \rightarrow K \quad f \in K^{E}$ $K=\{0,1, \ldots, 255\}$
\Rightarrow Gray-scale image operator : $\Psi: K^{E} \rightarrow K^{E}$
\Rightarrow Characteristic function: $\psi: K^{W} \rightarrow K$
\Rightarrow Design of gray-scale W-operators
Same design procedure could be applied

$$
\sqrt{2}
$$

Computationally much more hard !!

Impulse noise removal (1)

training images

Impulse noise removal (2)

test image

iteration 1

Impulse noise removal (3)

test image

iteration 5

Robustness (1)

Robustness (2)

Stack filter x median (1)

Stack filter x median (2)

Motion Tracking

Motion Tracking

Motion Tracking

Conclusion

- A powerful tool to solve practical problems
- Hard problems requires modeling of prior knowledge
- Prior knowledge modeling implies complex problems in Statistics, Algebra and Combinatory

