Computational Learning Design of image operators

Junior Barrera Nina S. T. Hirata Marcel Brun

Instituto de Matemática e Estatística University of São Paulo - Brazil

July/1999

Outline

- Design of W-operators
- Amount of data available
- Distribution of the domain
- Size of the window
- Constraints
- Gray scale and motion applications

Conclusion

Learning a concept

Learning a concept

Terminology

domain: objects with a random distribution

- concept: a set of objects of a given domain (or a binary function)
- teacher: he says if a generic object satisfies the concept, but he may make mistakes

Terminology

example: an object classified by the teacher

- learning algorithm: gives an hypothesis for the concept from a collection of examples
- training data: examples used in the learning algorithm

The optimization problem

The optimization problem

 ψ is a classifier on a random domain

$Er[\psi]$ is the error of ψ

 ψ_{opt} is a classifier of minimum error

$Er[\psi_{opt}] \leq Er[\psi], \forall \psi \in \Psi$

Error measure

Design goal is to find a function with minimum risk.

Risk (expected loss) of a function :

$$R(\psi) = E[l(\psi(X),Y)]$$

X is a random set

Y is a binary random variable

Loss function

$$l: \{0,1\}\times\{0,1\}\rightarrow R^+$$

Join probability

$R(\psi) = \sum_{X,Y} l(\psi(X),Y) p(X,Y)$

p(X,Y) needs to be estimated from training data

MAE example

Example : MAE loss function

 $l_{MAE}(a,b)=|a-b| \qquad a,b\in\{0,1\}$

$$MAE\langle\Psi
angle=E[|\psi(X)-Y|]$$

Optimal MAE function

$$\psi(X) = \begin{cases} 1 & p(1, X) > p(0, X) \\ 0 & p(1, X) \le p(0, X) \end{cases}$$

Generalization

GENERALIZED

PAC learning

L is Probably Approximately Correct (PAC)

For $m > m(\mathcal{E}, \delta)$ examples

$\Pr(|R(\psi) - R(\psi_{opt})| < \varepsilon) > 1 - \delta$

$\mathcal{E}, \delta \! \in \! (0,1)$

Efficiency

L should be computed in polynomial time

ψ should be represented in polynomial storage space

 Ψ should be executed in polynomial time

PAC learning procedure

1. Estimate *P*(*X*,*Y*) from training images

2. Attribute the binary label that minimizes the loss, for each observed shape

3. Make representation simplification (e.g., compute base), and attribute labels to non-observed shapes (generalization or prediction).

Example : Boolean function minimization, where non-observed shapes may be regarded as don't cares for minimization purpose.

$$\psi = \lambda_{X11} \cup \lambda_{1X0} \cup \lambda_{11X}$$

Pictorial representation

Simplified representation

white = 0

ISI (incremental splitting of intervals)

 $\blacksquare Interval : [A, B] \subseteq \mathcal{P}(W)$

Splitting of [A,B] by X, $X \in [A, B]$

 $[A,B] \setminus X = \{[A,B \cap \{a\}^c] : a \in P \cap A^c\} \cup \{[A \cup \{b\},B] : b \in P^c \cap B\}$

ISI algorithm

The problem

Find an image operator that transforms the observed image to the respective ideal (or "close to the ideal") image.

Binary image operators

Binary image : $f: E \rightarrow \{0, 1\}$

Binary images can be understood as sets :

$$f \longleftrightarrow S$$

 $x \in S \Leftrightarrow f(x) = 1 \quad \forall x \in E$

 $(\mathcal{P}(E), \subseteq)$ is a complete Boolean lattice

Binary image operators = set operators : $\Psi : \mathcal{P}(E) \rightarrow \mathcal{P}(E)$

Translation invariance

 $\Psi(S_z) = [\Psi(S)]_z$

Local definition

Window : $W \subseteq E$

 \Rightarrow An image operator is locally defined within W iff

$$x\in \Psi(S) \Longleftrightarrow x\in \Psi(S\cap W_x)$$

W-operators

W-operators are characterized by Boolean functions.

Statistical Hypothesis

X and Y are jointly stationary

 $P(S \cap W_7, Y)$

is the same for any z in E

Stationary Process

Join Stationary Process

Design procedure

Edge detection

Training images

Test images

Noise filtering

Training images

Test images

Noise removal

ABCDEFGHIJ KLMNOPQRS TUVXZWY abcdefghijklm nopqrstuvxzwy

Training images

ABCDEFGHIJ KLMNOPQRS TUVXZWY abcdeighijkim nopqrstavxzivy

Test images

Texture extraction (1)

Training images

Texture extraction (2)

Test images

Example

Training images

Test images

Amount of data available

aditivo: 2% subtrativo: 1%

aditivo: 3% subtrativo: 3%

aditivo: 6% subtrativo: 6%

window 5x5, 6 training images

aditivo: 2% subtrativo: 1% padrões distintos : 140.060 em 1.548.384

aditivo: 3% subtrativo: 3% padrões distintos : 266.743 em 1.548.384

aditivo: 6% subtrativo: 6% padrões distintos : 487.494 em 1.548.384

Size of the window

Size of the window

Size of the window

The space of *W*-operators is VERY large.

$$ightarrow |W| = n \implies \left\{ egin{array}{c} 2^{2^n} \\ 2^n \end{array}
ight.$$

W operators, conditional probabilities to be estimated

Consequences :

- Large amount of data (training images) are required for a good estimation of these parameters
- Learning algorithm complexity increases

x1	x2	p(-1,x1,x2)	p(0,x1,x2)	p(1,x1,x2)	p(x1,x2)	У	Error
-1	-1	0.05	0.1	0.05	0.2	0	0.1
-1	0	0.03	0.03	0.04	0.1	1	0.06
-1	1	0.02	0.01	0.07	0.1	1	0.03
0	-1	0.01	0.01	0.03	0.05	1	0.02
0	0	0.03	0.01	0.01	0.05	-1	0.02
0	1	0.07	0.1	0.03	0.2	0	0.1
1	-1	0.04	0.06	0.1	0.2	1	0.1
1	0	0.03	0.01	0.01	0.05	-1	0.02
1	1	0.02	0.02	0.01	0.05	-1	0.03
							0.48

Ideal design

x1	x2	p(-1,x1,x2)	p(0,x1,x2)	p(1,x1,x2)	p(x1,x2)	У	Error
-1	-1						
-1	0						
-1	1	0.02	0.01	0.07	0.1	1	0.03
0	-1						
0	0	0.03	0.01	0.01	0.05	-1	0.02
0	1						
1	-1	0.04	0.06	0.1	0.2	1	0.1
1	0						
1	1						

Real design

g3 = f(g1,g2)

Generalization

g1

Constraints

Structural Constraints

- impose maximum number of elements in the basis
- use alternative structural representations (e.g., sequential)
- Algebraic constraints

- consider class of operators satisfying a given algebraic property (e.g., increasingness, idempotence, auto-dualism, etc)

Structural Constraint : iterative design (1)

Motivation : composition of operators over small windows produces an operator over a larger window

 $\Rightarrow \Psi = \Psi_2(\Psi_1)$ is a $W \oplus W$ -operator

Iterative design procedure

Successive application of the single iteration design procedure

Application example

iteration 4

iteration 5

Algebraic constraints

Design of operators based on the switching approach

- estimate optimal *W*-operator
- switch value of the optimal W-operator in such a way that the resulting operator satisfies the algebraic constraint

Algebraic constraints

Increasing *W*-operators

 $x \le y \Rightarrow \psi(x) \le \psi(y)$

Switching approach

Switching approach

Inversion set

Only inversion set elements need to be switched.

Switching may increase risk

There exists a switching cost (amount of risk increase due to the switching) for each element in the inversion set.

➡ Goal : find switching that minimizes overall risk increase

aditivo: 2% subtrativo: 2%

Shapes

Gray-scale image operators

Gray-scale image: $f: E \to K$ $f \in K^E$ $K = \{0, 1, \dots, 255\}$

 \blacksquare Gray-scale image operator : $\Psi: K^E \to K^E$

 \blacksquare Characteristic function : $\psi: K^W \to K$

Design of gray-scale *W*-operators

Same design procedure could be applied

Computationally much more hard !!

Impulse noise removal (1)

training images

Impulse noise removal (2)

test image

Impulse noise removal (3)

test image

Robustness (1)

test image

Robustness (2)

test image

Stack filter x median (1)

iteration 5

Median 5x5
Stack filter x median (2)

iteration 5

5x5 median

Motion Tracking

Motion Tracking

Motion Tracking

Conclusion

A powerful tool to solve practical problems
Hard problems requires modeling of prior knowledge
Drior knowledge modeling implies complex

Prior knowledge modeling implies complex problems in Statistics, Algebra and Combinatory