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Introduction
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• A fundamental problem in image processing is the 

design of filters 

• Filters may be learned from pairs of images: 

(input, expected output)

• Let us show how to learn connected bandpass 

filters

• Connected filters do not introduce new edges in 

the image

• Connected bandpass filters are sieving filters.



5

Optimal non linear filter design



6

Problem Formulation

• Images are random sets: input X, ideal S 

• A filter Ψ is a set mapping

• Mean Absolute Error: MAE(Ψ) = E[|Ψ(X) ∆ S| ]

• Ψ is in a family of filters F

• Representation:

• Ψopt is such that MAE(Ψopt ) ≤ MAE(Ψ) for all Ψ

in F
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Difficulty

There is no closed formula for Ψopt in

terms of statistics of X and S.
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Approach

• Estimation of the joint probability distribution

between observations and the target variable to 

be estimated.

• Optimization via search over filter space

• Logic reduction to find a minimal filter 

representation.
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Complete Scheme



10

Collect and Decision
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Application
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Difficulty

Large windows implies in lack  of 

data, that is, serious estimation errors



13

Approach

Introduce prior information, that is, 

constrain the family of filters 
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Optimal linear filter design
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Linear Estimator

Estimate ideal signal S(s) via an observed 

(zero-mean) signal X(t) by linear operator

∫=Ψ
T
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Optimization involves finding g(s,t) to minimize the 

Mean Square Error (MSE)
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Wiener-Hopf equation

gopt(s,t) yields the optimal MSE linear estimator of S

based on X(t) iff it satisfies the Wiener-Hopf equation,

∫=
T

XoptSX dutuRusgtsR ),(),(),(

where RX and RSX are the auto-correlation and cross-

correlation for X, and X and S
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Power Spectral Density (PSD) 

The optimal function gopt(s,t) is given by
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where HX and HSX denote the PSD of RX and RSX , 

and Φ is the Fourier transform
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Interpretation

Linear Filter: spectral decomposition; 

choice of bands; reconstruction

The analytic derivation of the optimal 

linear filter depends on the signal and  

filter representation, that is, spectral 

decomposition and convolution.
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Connected openings and 

granulometries
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Morphological Opening

{ }Uo XxBxBBX ⊆++= :

where B+x is the translation of B by x
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Connected Filter

Eliminate objects or holes of the 

image. Does not create new edges.

X )( XΨ
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Single connected Opening

Eliminate objects for which does 

not exist x such that XxB ⊆+

B

X )( BXR o
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Original Image 

Opening Ψt(X) by a Disk Structuring Element 

(radius t = 25)
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Connected Opening

Eliminate objects for which does 

not exist i and x such that XxB i ⊆+
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Connected opening is a filter:

• idempotent: Ψ(Ψ(X)) = Ψ(X)

• anti-extensive: Ψ(X) ⊆ X

• increasing: X ⊆ Y implies Ψ(X) ⊆ Ψ(Y) 

• translation invariant: Ψ(X+x) = Ψ(X) + x

• connected
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Connected Granulometries

Model parameterized sieving processes on 

random sets

A family of operators Ψt is a granulometry iff

i- for all t > 0 , Ψt is a connected opening

ii- r ≥ s > 0 implies Inv[Ψr] ⊆ Inv[Ψs] 

{ }XXXInv =Ψ=Ψ )(:][



27

Example
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Band Pass Filter

For a connected granulometry {Ψt}, if X is 

formed as an union of disjoint compact grains 

and r < s , then all grains contained in Ψs(X)

are also contained in Ψr(X) , and 

Ψr,s = Ψr - Ψs can be viewed as a size band.
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Original Image Process

Band pass Filter Ψ25,49 =   ( Ψ25 - Ψ45 )

Band pass Filter Ψ15,25 =   ( Ψ15 - Ψ25 )
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Granulometric spectrum of X relative to the

granulometry {Ψt}

The collection {Xt} of spectral components 

forms a partition of X

Granulometric Spectrum

r

r + τ
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Granulometric band pass filter Ξ corresponding to Π

Granulometric Bandpass Filter

Π is the union of a countable number of intervals

U
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Granulometric Size Density

For a compact set X, we define the size distribution

)]([][)( XXt tΨ−=Ω νν

Mean size distribution (MSD)
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Granulometric size distribution
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Interpretation

Granulometric Filter: spectral shape 

decomposition; choice of shape bands; 

reconstruction
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Optimal granulometric filters
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Image Model

Signal: S;  Noise: N; Signal-noise: S ∪ N, S ∩ N=∅
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random real numbers: si and nj

random compact grains: C[si] and D[nj]

random points: xi and yj



36



37

Optimization problem

Observation: S ∪ N, Estimator: ΞΠ(S ∪ N)

Error: Signal grains erroneously removed and 

noise grains passed.

Find Π such that ΞΠ is optimal in {ΞΠ}, that 

is, minimizes

( )[ ][ ]SNSEEr ∆Ξ=Ξ ΠΠ Uν][
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Error Formula

For practical purposes, the MSD is continuously 

differentiable, and the following theorem holds:

Theorem: The error of the filter ΞΠ is given by

∫ ∫
Π Π

Π Η+Η=Ξ
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HS

HN

t1 t2 t3 t4

π = [t1, t2] ∪ [t3, t4] 

∫ ∫
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Optimal Filter

An optimal pass set Πopt is given by:

Π o p t  =  { t :  Η S ( t)  ≥  Η N ( t) }

The bandpass form of the optimal filter is:

U
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Conclusion
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• Recalled strategies for designing general non linear 

filters 

• To learn non linear filters it is necessary to estimate 

the join probability of input and output

• Recalled the Wiener-Holpf formula for designing 

linear filters

• To learn linear filters it is enough to estimate the 

power spectral density of the autocorrelation and 

cross correlation.
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• Presented an analogous formula for designing

bandpass connected filters

• To learn bandpass connected filters it is enough to 

estimate the Granulometric Size Distribution of 

Signal and Noise

• The result holds by analogous facts observed in 

the increasing case: signal decomposition and 

operator representation
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• There is no known generalization of these 

results for
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• The result is generalized for
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