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Abstract

We address the problem of automatically analyzing hockey scenes by estimating the
panning, tilting and zooming parameters of the broadcasting cameras, tracking hockey
players in these scenes, and constructing a visual description of the scenes as trajec-
tories of those players. Given quite fast and non-smooth camera motions to capture
highly complex and dynamic scenes of hockey, tracking hockey players that are small
blob-like, non-rigid and amorphous becomes an extremely difficult task. We suggest a
new method of automatically computing the mappings to represent the globally consis-
tent map of the hockey scenes by removing camera motions, and implement a color-
based sequential Monte Carlo tracker to track hockey players to estimate their real
world position on the rink. The result demonstrates a quite successful performance on
both objectives. We make two new contributions in this research. First, we introduce
a new model fitting algorithm to reduce projection errors. Second, we use an adap-
tive model to improve the current state-of-art color-based probablistic tracker. Our
approach is also applicable for video annotation in other sports, surveillance, or many
other situations that require obect tracking on a planar surface. Since there have not
been any hockey annotation systems developed in the past, we hope that our system
would become a stepping stone for automatic video annotation in hockey.

Keywords: RANSAC, KLT, Homography, sequential Monte Carlo
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Chapter 1

Introduction

1.1 Motivation

Computer systems that have the capability of analyzing complex and dynamic scenes

could play an essential role in video annotation. Scenes could contain many cluttered

objects with different colors, shapes and sizes, and can be dynamic with multiple inter-

active moving objects and a constantly changing background. There are many scenes

that are complex, dynamic, and challenging for computers to describe. Those scenes

include games of sports, air traffic, car traffic, street intersections, and cloud transfor-

mations.

Our motivation arises in the challenge of inventing a descriptive computer sys-

tem that analyzes scenes of hockey games where multiple moving players interact

with each other on a constantly moving background due to camera motions. Ulti-

mately, such a computer system should be able to acquire reliable data by extracting

the players’ motion as their trajectories, querying them by analyzing the descriptive

information of data, and predicting the motions of some hockey players based on the

result of the query.

Among these three major aspects of the system, we primarily focus on visual

information of the scenes, that is, how to automatically acquire motion trajectories of

hockey players from video. The source of our motivation is composed of one practical

and two technical reasons.

First, hockey is one of the major sports in North America and there is a great
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potential and space for the practical application of automatic video annotation. Al-

though there have been video annotation systems in the domain of soccer [3, 7, 17, 38],

basketball [29] and football [11], to the best of our knowledge, there have not been any

automatic video annotation systems in hockey.

Second, the data acquisition part of the system we focus on is the heart of our

hockey annotation system. For reliable performance of hockey analysis, it is crucial

that we have a robust vision system to gain data for a further analysis. Our goal is to

achieve the degree of automation and accuracy of the system which leads to our future

development of the complete automatic hockey annotation system.

Finally, many technical challenges in vision make this problem worthwhile to

tackle, which may be a reason why a complete annotation system for hockey has not

been developed in the past. Unlike most major sports of North America including

football, baseball, and basketball, hockey players move much faster and more unpre-

dictably, which makes it extremely difficult to track them. The area of the hockey rink

is smaller than the soccer or football field and the speed of a puck is much greater than

that of a soccer ball, basketball or football. Therefore, broadcast hockey video often

contains fast and non-smooth camera motions to capture fast-moving dynamic scenes

of hockey games. Section1.4 summarizes vision challenges we need to solve. Al-

though there are many obstacles to overcome, our efforts and accomplishments would

hopefully establish the infrastructure of the automatic hockey annotation system and

contribute to research in automatic video annotation.

1.2 The Problem

With the advance of information technologies and the increasing demand of managing

the vast amount of visual data in video, there is a great potential for developing reliable

and efficient sports systems that are capable of understanding and describing various

scenes of sports. Such systems would require the ability of analyzing the content of

the data, which is the problem addressed in this thesis. The description of the problem

is well articulated by Intille [11]:

“Video annotation is the task of generating descriptions of video sequences
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that can be used for indexing, retrieval, and summarization.. . . one is pri-

marily interested in what is happening in a scene, as opposed to what is in

the scene.”

The problem is not to build the system that performs high-level analysis of

scenes, but to develop an automated video annotation system that provides the descrip-

tion of the scenes by performing low-level analysis of the scenes. More accurately, it

is about automatically analyzing the hockey scenes by estimating parameters (i.e., pan,

tilt, and zoom) of the broadcasting cameras, tracking hockey players in these scenes,

and constructing a visual description of the scenes as trajectories of those players.

1.3 Hockey Annotation System

This section provides an overview of our system. As it is shown in Figure1.1, our

annotation system takes a TV sequence and automatically generates trajectories of

tracked players as a visual description of the scenes. Two major major components

of our system, namely the tracking system and rectification system, are explained in

detail in the preceding chapters. Although our system could be described on a simple

picture in Figure1.1, building such a system requires to solve many vision problems

that make this challenge difficult. The next section summarizes major vision problems

we have encountered throughout the development of our system.

1.4 Vision challenges

In order to achieve a successful development of the vision system, we need to over-

come various vision challenges. This section describes vision problems, including

camera motions, low-resolution, deformable, non-smooth object to be tracked, and

their rapid motions.

1.4.1 Camera motions

Since the source of our data is limited to video clips of broadcasting hockey games,

there are various camera motions that we need to deal with or occasionally need to

3



Figure 1.1:Hockey Annotation System

This image explains how our hockey annotation system works. It takes a TV video
sequence as an input and generates a description of the scenes as trajectories of the
tracked players in the coordinate of the globally consistent map of the rink.
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avoid. Figure1.2 shows how much a camera moves over 1500 frames which is 50

seconds at the sampling rate of 30 frames per second. As it is shown, within only 50

seconds, a camera captures most of the rink surface. These camera motions include

panning, tilting, and zooming in and out.

(a) Frame 1 (b) Frame 500

(c) Frame 1000 (d) Frame 1500

Figure 1.2:Camera motions over 1500 frames

The image of Frame 1, 500, 1000, and 1500 respectively from our hockey data. These
four images show a different part of the rink captured by the same camera.

As it is demonstrated in later chapters, our vision system can deal with those motions.

However, there are also camera motions we need to avoid. Those are occasional close-

ups of players. The experimental data do not contain any close-ups of players because

those scenes contain only information about players and no information on the rink,

and there is no way to derive the transformation between the original data and the

globally consistent rink map we use as a model. With data that contains no close-up

shots of players, we find information about the camera pan, tilt, zoom by extracting

visual features on static objects, such as standard rink elements (i.e., lines, circles, and
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advertisements both on the rink and at the side of the rink) and audience, between two

different images. Chapter 3 explains more details.

1.4.2 Camera flashes

During a hockey game, there are many camera flashes from fans in the audience. From

a computer vision standpoint, camera flashes cause a drastic illumination change of the

image. For example, Figure1.3 shows a frame without a camera flash and one with

a flash. It is clear that there is a noticeable change in the brightness of two different

frames.

(a) a frame before a camera flashes (b) a frame with a camera flash

Figure 1.3:Frame with or without a camera flash

(a) is the image before a camera flashes. (b) is the next frame when a camera flashes.
These two frames show how much camera flashes could affect the illumination con-
dition of the image. Note the glass above the rink boards where we see the players’
shadow and reflection.

Since camera flashes could result in failure of our vision system, we need to avoid

them. In Chapter 3, we implement a detector to catch the intensity change of two

different frames.

1.4.3 Attributes of target objects

For the successful development of the tracking system, it is crucial to have detailed

information about the attributes of the targets. This section presents attributes of our

target objects and issues specifically related to the tracking of hockey players.
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Low spatial resolution

In our hockey data, players are small objects in low spatial resolution. They have the

size of about25× 25 pixels at the highest resolution and10× 10 pixels at the lowest

resolution. Figure1.4shows sixteen instances of such a small object.

Figure 1.4:Low-resolution objects (i.e., hockey players)

These people are some forwards, defensemen, and referees. All of them have low
spatial resolution and it is hard to recognize them even by human vision.

Low-resolution objects limit the use of vision techniques that require high spatial res-

olution images. Furthermore, the role of players is not visible from their appearance,

but only in relative position during play. Only goalie looks distinguishable from other

players. However, it is important to note that the color property of the objects is still

useful for tracking such objects in both high and low resolution images.

Deformable shapes

Target objects are not only in low spatial resolution, but also deformable. As it is

shown in Figure1.5, it is clear that a hockey player is a non-rigid, deformable object.

In a video sampled at 30 frames per second, the object undergoes large shape changes.

Obviously, we cannot simply model the shape of the object. It is even harder

to recognize distinctive visual features of the players such as numbers, logos on the

uniform, or the color of their helmet. Although it seems quite difficult to track hockey

players, it is not impossible to track hockey players. While Intille and Bobick [11]

takes a non-model based approach on the tracking of similar objects (i.e., football

players in their case) and obtains a successful tracking result of around 200 frames, we

do not take the same approach as them. Chapter 4 explains, in detail, how we model

low-resolution and deformable objects and how they are successfully tracked.
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frame 1 frame 2 frame 3 frame 4 frame 5 frame 6

frame 7 frame 8 frame 9 frame 10 frame 11 frame 12

frame 13 frame 14 frame 15 frame 16 frame 17 frame 18

frame 19 frame 20 frame 21 frame 22 frame 23 frame 24

Figure 1.5:How rapidly a hockey player changes his shape

There are 24 frames (slightly less than a second) to display how the shape of a hockey
player changes. There is a clear difference between the images in the first row and the
last row.
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The presence of similar objects

In hockey, there are six players in each team who play on the rink in a game. Therefore,

there are many occasions when the players in the same team or in a different team come

close or even collide and occlude each other. This makes the tracking task extremely

difficult. Chapter 4 demonstrates the robustness of our tracking method in occlusions

and cluttered scenes.

1.5 Outline of Thesis

Developing an automatic hockey annotation system is a challenging task. In the fol-

lowing chapters, we show that it is, however, possible to develop such a descriptive

computer system that automatically analyzes hockey scenes. Our hockey system is

composed of two major components: One is the rectification system for computing

transformations between a broadcast video sequence and the globally consistent rink

map. The other one is the tracking system for tracking hockey players and estimating

their real world position on the rink.

The next chapter explores the previous work in the development of sports sys-

tem in various other fields of sports, introducing a brief background of tracking tech-

niques, and justifies our choice of the tracker for tracking small objects (i.e., hockey

players) in complex environments. Chapter 3 explains the process of the rectification

system and show how the system automatically registers the sequence. We present a

improved version of the Kanade-Lucas-Tomasi(KLT) tracker by predicting the current

camera motion based on the previous camera motion and introduce a new model fitting

algorithm to reduce projection errors over time. Chapter 4 describes the tracking sys-

tem for hockey players. We improve the current state-of-art color-based probabilistic

method by applying adaptation to the color-based likelihood model. Along with the

tracking results by our color-based sequential Monte Carlo tracker, we also present

trajectories of hockey players by transforming real world positions of hockey trackers

to the globally consistent rink map. In the last chapter, we summarize our thesis and

show future directions for the further development of our annotation system.
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Chapter 2

Previous Work

This chapter presents a brief review of the literature on sports systems and techniques

of visual tracking, and justifies our approaches taken to develop our annotation system.

2.1 Sports systems

Video annotation for sports has been one of the major research areas for which vision

techniques are essential. This section is about the brief literature survey of past video

annotation systems in various sports.

2.1.1 Soccer

Soccer is known as the most popular sport in the world. Due to a great potential and an

expected high market value for the practical application of soccer annotation systems,

many annotation systems have been developed in the past. In this section, we present

only selected ones that have techniques related to our hockey annotation system: two

representatives for low-level analysis such as the tracking of players and a ball, and

one for high-level analysis on the classification of the scenes.

Yamadaet. al[38] develop a system to analyze soccer game scenes by tracking

players and a ball for estimating their 3D positions. Their system estimates parame-

ters (i.e., pan, tilt, and zoom) of a camera in each frame and maps positions in the

image to 3D positions on the globally consistent map of the soccer field. A TV broad-

cast video sequence is used for their low-level content analysis. Assuming that soccer
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players have smooth and constant motion within a short time period, the positional

information of players is used to estimate their current position. The color information

of the uniform is used to deal with occlusions. As for tracking a ball, the detection is

performed by extracting the white regions that are neither players nor lines, and the

position of the ball is estimated based on the previous position, gravity and air fric-

tion. For the 3D position of players and a ball, the rotational parameters (i.e., the pan

and tilt angles) and the focal length of the camera are estimated by matching extracted

line and circle regions to the model of the soccer field. In the initial frame of the se-

quence, the camera parameters are estimated by maximizing the number of pairs of

the matching points and estimated again for the second frame by searching around the

initial parameters. Assuming the smooth motion of broadcasting cameras, the system

estimates the camera parameters for subsequent frames by extrapolating the previous

two positions of the camera. The 3D position of players and a ball is now gained based

on the estimation.

The system developed by Yowet. al [3] explores techniques to analyze soccer

games by extracting the soccer highlights and presenting their content as the panoramic

views of trajectories of players and a ball. Their system uses a luminance model based

on a second-order Taylor series expansion for motion estimation between frames. The

panning parameters of a camera are estimated first for initialization. The system then

applies block matching on texture rich regions of the field to estimate the global motion

parameters of the camera. For detection of the ball, the template-based “intra-frame”

approach is used by searching the possible motions of the ball among all motions de-

tected based on the difference image of two frames. Considering the previous and next

position of the ball based on estimated camera parameters, the tracking of the ball is

performed.

Those two systems are, however, not appropriate for hockey games due to the

following reasons: First, their assumption of smooth and constant motion of players

and a ball does not hold in hockey because the motion of hockey players is much

faster and less smooth than soccer players and the speed of the puck is much greater

than that of the soccer ball. Second, in hockey, the camera motion is required to be fast

and non-smooth for capturing much faster motions of players and the puck where their
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method of estimating camera parameters has most likely failed to work. Third, their

systems may not be robust because there is no evidence that proves the robustness of

those systems for more than 70 frames, that is, a bit over two seconds of the scenes at

the sample rate of 30 frames per second. Finally, it is extremely difficult to predict the

position and motion of a puck due to its tiny size and quite fast and unpredictable mo-

tion. While the detection and tracking of the puck is one of the hardest vision problems

remained to be unsolved, it is certainly a key to the success of our future annotation

system that eventually combines low-level and high-level analysis of hockey.

For high-level content analysis of soccer, an automatic parsing system on TV

broadcasting video is introduced by Gonget. al [7]. The goal of their system is to

extract semantic information of the soccer games and categorize it into various high-

lights such as shooting scenes, and corner kick scenes. Their parsing system takes a

model based approach which uses the soccer field, a ball, players and camera motions

to recognize the soccer scenes. The detection of the field features such as lines, cir-

cles, and the goal posts is performed to recognize where the play is happening. The

shape and color of the ball is used for the detection of a ball to figure out the content

of the play (i.e., shootings, corner kicks, goals and etc) by finding out where the play

is happening on the soccer field and the color of players’ uniform is used to further

refine their recognition accuracy. Their system provides accurate high-level analysis

of soccer scenes without tracking players or a ball. However, now that their system

requires the detection of a ball, it does not work in hockey because there is no vision

technique to accurately detect and track a puck. With the detection and tracking of a

puck, their approach is a possible future direction of our annotation system.

2.1.2 Other sports

There are also annotation systems developed in other sports. For instance, Sauret. al

[29] develop a system for automated analysis and annotation of basketball video. Their

system provides fast and efficient analysis of basketball video by using only informa-

tion in the MPEG bit stream without full decompression. There are three different

frames of MPEG standard such as Intra-pictures, Predicted pictures and Bi-directional

predicted pictures. In any one frame, they are limited to the following information:
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macroblock motion vectors, intra-coded block positions and count, block discrete co-

sine transform coefficients and residual error. Using motion vectors and counting intra-

coded blocks, the panning parameters of camera motions are estimated for high-level

analysis of the scenes including wide-angle and close-up views, fast breaks, steals, po-

tential shots, number of possessions and possession times. They do not use low-level

content of video such as colors, object shapes, motions of players, and image tex-

ture. Since our hockey annotation system focuses on low-level content of video, their

method does not directly apply to our system. Their result on a minute long video

sequence are fairly successful since they simplify their analysis by not considering the

tilting parameters of camera motions and camera motions are reasonably smooth and

constant in basketball. Although their method may not work well in highly complex

and dynamic scenes such as ones in hockey, their approach indicates a possible future

extension of our annotation system that may require the combination of low-level con-

tent of video and camera motions for accurate high-level analysis.

Intille and Bobick [11] develop the-state-of-art automatic annotation system

for American football footage and become the pioneer of automatic video annotation

research in the domain. Their system extracts camera motions by tracking features

on the football field and registering the original football video sequence to the glob-

ally consistent map of the football field. With an accurate registration of the globally

consistent football sequence, they conduct “closed-world” analysis to track football

players in complex scenes where “closed-world” is defined as “a region of space and

time in which the specific context is adequate to determine all possible objects present

in that region.” In other words, given the model of the football field that is composed of

all field features including turf, lines, hash-marks, number, arrows, and logos, they ex-

tract blobs of moving objects (i.e., players) by taking the difference image between two

frames. Only player’s pixels are then extracted from those motion blobs by “closed-

world” analysis and the tracking is performed on those player’s pixels. Their system

is currently the-state-of-art annotation system since they prove the robustness and re-

liability of their system by showing the result of around 200 frames that is longer than

any other annotation systems for low-level content analysis can give. Therefore, their

approach becomes the model of our system.
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As a consequence of surveying video annotation systems in various sports, it

is evident that soccer, basketball, and football are easier domains for automatic video

annotation than hockey from a vision standpoint. In the following chapters, we show

that our annotation system has a similar framework as Intille and Bobick’s system, yet

uses completely different tracking approaches and gives much better performance.

2.2 Tracking techniques

Object tracking requires the efficient tracking of visual features in complex environ-

ments and applies to many applications. There is, of course, a substantial literature

on tracking for various purposes including sports tracking [22, 11, 17, 20, 38], smart

environments [12, 37], human figure tracking [15, 32, 35, 24], video surveillance [26],

face tracking [15, 14, 28], among many others.

As Intille and Bobick [11] point out, low spatial resolution, non-rigid, and

deformable objects such as football players or hockey players in broadcast video se-

quences limit the choice of techniques applicable. In fact, Intille and Bobick avoid

the modeling of football players and invent a non-model-based tracking method by

extracting players’ pixels and tracking them. Their system removes camera motions

from the original video sequence taped by broadcast cameras, transforming the orig-

inal sequence to the globally consistent football field map (i.e., world coordinates),

and then performs the tracking of football players on the rectified sequence. Their

tracking approach has, however, two drawbacks for visual tracking applications such

as the tracking of hockey players. Principally, their tracking results depend highly

on the accuracy of the rectification process and limit their tracking on the fixed back-

ground. Secondly, and more importantly, their non-model based tracking method does

not incorporate useful properties of objects such as the color information and dynam-

ics of their motions. Therefore, we choose to use a model-based approach for tracking

hockey players and overcome these drawbacks.
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2.2.1 Probabilistic models for tracking

Among many model-based tracking approaches, the probabilistic approach becomes

attractive due to its systematic handling of uncertainty and ability to incorporate fu-

sion of information. Given the state sequencex0:t ∈ Rnx and observation history

y0:t ∈ Rny from time 0 to time t wherenx andny denotes the dimension ofx and

y, a prior probability density,p(xt|y0:t−1), propagates the past state into future before

new observation is made. Given the prior, a posterior distribution,p(xt|y0:t), can be

estimated forxt based on the past and current observations, which is also known as the

process of “filtering”. For different applications, the state sequencex0:t and observa-

tion historyy0:t can represent different entities. However, regardless of applications,

the general state-space model for the object tracking problems can be represented as

a state transition (i.e., the system dynamics) and state measurement model (i.e., the

system observation):

p(xt|xt−1) : xt = f(xt−1,vt−1)

p(yt|xt) : yt = h(ut,xt,wt)

where, in this case,vt ∈ Rnv andwt ∈ Rnw are the process noise and observation

noise respectively.ut ∈ Rnu denotes the input observations. Under a circumstance

which two mappingsf : Rnx × Rnv 7→ Rnx and f : Rnu × Rnx × Rnw 7→ Rnx

are linear and Gaussian, the posterior density,p(xt|y0:t), has an analytic solution ob-

tained by the Kalman filter [27]. Unfortunately, tracking objects in real world includ-

ing hockey players rarely satisfy Gaussian assumptions required by the Kalman filter

because background clutter may resemble a part of foreground features, which makes

the density forxt to be multi-modal and non-Gaussian, and the system dynamics and

the system observation are usually highly non-linear.

CONDENSATION [13], also known as Temporal Bayesian filtering, is one of

the most successful object tracking approaches for non-linear and/or non-Gaussian re-

ality. Following the pioneering work of CONDENSATION, the vision community has

drawn a considerable attention to techniques based on Monte Carlo simulations whose

idea is about selecting statistic random samples (i.e., particles) to estimate the poste-

riors. Recently, sequential Monte Carlo methods [4, 18, 25, 36, 23, 19] have become
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popular and catch our attention due to their flexibility, easy implementation, and wide

applicability.

2.2.2 Learning models

For modeling complex and dynamic objects, learning the appearance and motion of

such objects is common [15, 32, 35, 24]. One of the most successful probabilistic

tracking approaches with learned models is the system developed by Toyama and

Black [35]. They apply a new examplar-based tracking method with probabilistic

mechanisms that enable fusion of information. Their learning algorithm, referred as

“Metric Mixture” approach, is about learning complex object models based on exem-

plars that represent different configurations of objects as probabilistic mixture distri-

butions. With valuable properties of their “Metric Mixture” approach such as the use

of metrics without a vector space embedding, incorporation of a noise model from the

training data, and avoidance of probabilistic pixelwise independence, they demonstrate

the effectiveness and robustness of their probabilistic tracking method for the tracking

of walking people and mouth tracking. However, their approach requires the fixed

background for the automatic generation of exemplars and therefore it is not appli-

cable for the tracking of hockey players with a constantly changing background. And

more importantly, Bayesian probabilistic method with learned dynamic models are not

easily extended to the multiple object tracking since learning is required offline for a

model of each object.

2.2.3 Color-based tracking methods

Instead of learning the parameters of an object, the idea of using a color model be-

comes our interest since color-based tracking methods have been proved robust, versa-

tile and computationally efficient [2, 23, 25]. Comaniciuet. al [2] introduce the real-

time color-based tracking system for non-rigid objects using the mean shift procedure.

Given the global reference color models, the best target candidate is selected based on

the statistical similarity measure of a metric expressed with the Bhattacharyya coef-

ficient. Excellent tracking results on complex scenes are presented by their method.

However, their method also reveals a weakness of their deterministic search that fails if
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the object is occluded for a while or the background has similar colors. For improved

handling of such situations, Nummiaroet. al [23] and Peŕez et. al [25] introduce

the same idea of using color-based model tracking but embedded in the framework of

sequential Monte Carlo methods. The main difference between their methods is the

color space they use for color models. While Nummiaroet. al [23] uses the RGB

color space for their color models, Peréz et. al [25] uses the Hue-Saturation-Value

(HSV) color space for their color models. Since the HSV color space is known to be

insensitive to illumination changes, we choose to implement the system developed by

Peŕezet. al [25], and add an improvement and extension to their method for realizing

the tracking of hockey players.

2.3 Summary

In our literature survey, we do not find any hockey annotation systems developed in the

past. There are many annotation systems developed in other sports including soccer,

basketball, and football. The framework of our annotation system is based on that of

the football annotation system developed by Intille and Bobick [11]. However, we

use totally different approaches for both the rectification of the original sequence to

the globally consistent map and the object tracking. While the attributes of the object

such as non-rigidity, deformable shape, and low-resolution, limit the choice of tracking

techniques applicable, we implement an improved and extended version of the color-

based sequential Monte Carlo tracker developed by Perézet. al [25]. The following

chapters explain in detail the major components of our annotation system and show

successful performance results.
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Chapter 3

Automatic Computation of

Homography

3.1 Introduction

This chapter presents a major component of our hockey annotation system: how to

capture camera motions and transform the original sequence in broadcast video to the

globally consistent map of the hockey rink. We first introduce the theoretical back-

ground of a planar projective transformation (i.e., homography) [9, 16, 34, 39] and

a detailed framework of the Kanade-Lucas-Tomasi (hereafter KLT) tracking system

[1, 30, 31, 33]. Our algorithm, also described later in this chapter, for automatically

computing homographies uses the KLT system to track features over a sequence of

frames and RANSAC [6] to gain reliable features (i.e., inliers) to compute a homogra-

phy between images by the normalized direct linear transformation. The homography

is then refined by iteratively discarding outliers based on the symmetric transfer error

on each correspondence. Our model fitting algorithm reduces projection errors of the

homography by matching a projected image to our model of the globally consistent

rink map. At the end of the chapter, our rectification results demonstrate the robust-

ness of our algorithm by successfully eliminating camera motions in images, namely

panning, tilting, and zooming.
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3.2 Notation

Vectors and matrices are represented by bold-face letters where bold lower case letters,

such asv, are vectors and bold upper case letters, such asM, are matrices. We write

v = (x, y)>, which means that both sides of this equation represent column vectors.

Vectors are considered as being column vectors unless explicitly transposed. There-

fore,v> is a row vector. Vectors are multiplied as if they were matrices. In particular,

for two vectorsu andv, the productu>v represents the inner product, whereasuv>

is a matrix. The cross product of two vectorsu andv is expressed asu×v . The norm

of a vector,‖v‖, is the Euclidean length of the vector, which is obtained by the square

root of the sum of squares of its entries.

3.3 Homography

Within this section, the theoretical background of homography (also known as a plane

projective transformation, or collineation) is described. The definition of homography

(or more generallyprojectivity) is given in [9] as an invertible mapping of points and

lines on the projective planeP2:

DEFINITION 1 A projectivity is an invertible mappingh : P2 → P2, such that three

pointsx1, x2 andx3 lie on the same line if and only if mapped pointsh(x1), h(x2)

andh(x3) also lie on the same line.

This gives homography two useful properties. For a stationary camera with its fixed

center of projection, it does not depend on the scene structure (i.e., depth of the scene

points) and it applies even if the camera ”pans and zooms”, which means to change the

focal length of the camera while it is rotating about its center. With these properties,

we apply homography under the circumstance which the camera pans, tilts, zooms

and rotates about its center. Given a sequence of images acquired by such a camera,

the objective is to specify a point-to-point planar homography map in order to remove

the camera motion in images. Although, in our case, the camera center moves by a

negligible amount due to the small offset from the rotational center of the camera, the

distance between the scene and the camera is much bigger than the amount so that we
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can still assume that we have a fixed camera center.

3.3.1 Representation of Homography

We use homogeneous representation for a pointx = (x, y, w)>, which is a 3-vector,

representing a point(x/w, y/w)> in Euclidean 2-spaceR2. As homogeneous vectors,

points are also elements of the projective spaceP2. It is helpful to consider the in-

homogeneous coordinates of a pair of matching points in the world and image plane

as(x/w, y/w)> and(x′/w′, y′/w′)>, because points are measured in the inhomoge-

neous coordinates directly from the world plane. According to [39], a homography is

a linear transformation ofP2, which is expressed in inhomogeneous form as:

x′/w′ =
Ax + By + C

Px + Qy + R
, y′/w′ =

Dx + Ey + F

Px + Qy + R
(3.1)

where we define vectorsx andx′ in homogeneous form, and a transformation matrix

M as:

x =


x

y

w

 x′ =


x′

y′

w′

 M =


A B C

D E F

P Q R


where we have a pair of 2D point correspondences,x ↔ x′. Normally we choose the

scale factorw in such a way thatx/w andy/w have order of 1, so that we can avoid

numerical instability.

Now, Eq. (3.1) can be written as:

x′ = cMx (3.2)

wherec is an arbitrary nonzero constant. Homographies and points are defined up to

a nonzero scalarc, and thus we have 8 degrees of freedom for homography. Often we

takeR = 1 and the scale factorw = 1. Eq. (3.2) can now be written simply as:

x′ = Hx

whereH is 3× 3 matrix called homography. Every correspondence (x, x′) gives two

equations (3.1). Therefore, computing a homography requires at least four correspon-

dences.
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3.3.2 Homography Computation

The Direct Linear Transformation algorithm

Given a set ofn 2D to 2D point correspondences,xi ↔ x′i (n ≥ 4 andi = 1 . . . n),

we can determine homography,H, by a simple linear algorithm, the Direct Linear

Transformation (DLT) algorithm, introduced in [9].

If the transformation is given by the equationx′i = Hxi, which involves

homogeneous vectors, then the 3-vectorsx′i andHxi are not necessarily equal. They

have the same direction but may differ in magnitude by a non-zero scalar factor. In

order to enable a simple linear solution forH to be derived, the equation may simply

be expressed in terms of the vector cross product asx′i ×Hxi = 0.

Then we may write:

Hxi =


h1xi + h2yi + h3

h4xi + h5yi + h6

h7xi + h8yi + h9


where we define 3-vectorsxi andx′i, and homographyH as follows:

xi =


xi

yi

wi

 x′i =


x′i

y′i

w′
i

 H =


h1 h2 h3

h4 h5 h6

h7 h8 h9

 (3.3)

where we choosewi = w′
i = 1 so that (xi, yi) and (x′i, y

′
i) are the coordinates measured

in the image. This avoids the case when one of the points,x′i, is the ideal point with

w′
i = 0. If one of the pointsx′i is the ideal point, then Eq. (3.5) below collapses into

a single equation. Meanwhile, the cross product may be expressed as:

x′i ×Hxi =


y′i(h7xi + h8yi + h9)− (h4xi + h5yi + h6)

(h1xi + h2yi + h3)− x′i(h7xi + h8yi + h9)

x′i(h4xi + h5yi + h6)− y′i(h1xi + h2yi + h3)

 (3.4)
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Eq. (3.4) may be written in a simpler form:


0 0 0 −xi −yi −1 y′ixi y′iyi y′i

xi yi 1 0 0 0 −x′ixi −x′iyi −x′i

−y′ixi −y′iyi −y′i x′ixi x′iyi x′i 0 0 0





h1

h2

h3

h4

h5

h6

h7

h8

h9



= 0 (3.5)

For simplicity, this can be written as:

Tih = 0 (3.6)

whereTi becomes the3 × 9 transformation matrix andh is the 9-vector made up of

all the entries ofH in Eq. (3.3). It is important to note that in Eq. (3.5), only two

among three equations are linearly independent since the the third row is obtained, up

to scale, and can be omitted. Without the equation in the third row, Eq. (3.5) becomes:

 0 0 0 −xi −yi −1 y′ixi y′iyi y′i

xi yi 1 0 0 0 −x′ixi −x′iyi −x′i





h1

h2

h3

h4

h5

h6

h7

h8

h9



= 0 (3.7)

whereTi can now become the2× 9 matrix in Eq. (3.6).

If a set ofn 2D to 2D point correspondences,xi ↔ x′i (n ≥ 4 andi = 1 . . . n),

then the set of2n− 1 equationsTh = 0 can be derived from Eq. (3.7). Although the

set of2n equations can also be derived from Eq. (3.5) as well, in either case,T has
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rank 8, a one dimensional null-space, and a solution. If the position of the points is

exact, then the matrixT will still have rank 8 with a one dimensional null-space, and

there is an exact solution forh. However, this is hardly the case because, in practice,

the measurement of image coordinates is inexact due to noise. If there is no exact

solution, then we need an approximate solution for the system ofTih = 0. Although

h = 0 is clearly a solution, that is not what we want. In order to avoid the zero so-

lution, we can add a constraint of the norm,‖h‖ = 1. SinceH is only defined up to

scale, the value of the norm can be any number except 0.

Now, the problem naturally becomes the minimization of the norm‖Th‖. As

shown in detail in [9], the solution is the (unit) eigenvector ofT>T with least eigen-

value, which is equivalent to the unit singular vector corresponding to the smallest

singular value ofT. The summary of this DLT algorithm is shown in Algorithm 1.

Algorithm

Given a set ofn 2D to 2D point correspondences,xi ↔ x′i (n ≥ 4 andi = 1 . . . n),
determine the 2D homographyH such thatxi = Hx′i.

(1) Derivation of Ti:
For each correspondencexi ↔ x′i, compute the matrixTi from either Eq. (3.5)
or Eq. (3.7).

(2) Ti → T:
Assemble then 2× 9 matricesTi into a single2n× 9 matrixT.

(3) SVD:
Perform SVD onT and obtain the unit singular vector corresponding to the
smallest singular value, which is the solution, the 9-vectorh. That is, ifT =
UDV> with D diagonal with positive diagonal entries, arranged in descending
order down the diagonal, thenh is the last column ofV.

(4) h → H:
Obtain the matrixH by rearranging all entries ofh as in Eq. (3.3).

Algorithm 1: The DLT algorithm for 2D homographies excerpted from Hartley
and Zisserman [9]
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The Normalized Direct Linear Transformation algorithm

Since the DLT algorithm is not invariant for the correspondences in different image

coordinate systems, Hartley and Zisserman [9] develop the normalized DLT algorithm

that works under different image coordinate systems. In our algorithm described later

in Section3.6, we use the normalized DLT algorithm.

There are two benefits of data normalization before carrying out the DLT algo-

rithm. One is that normalizing point correspondences into the same coordinate system

gives a better solution because the algebraic minimization takes place in a fixed canon-

ical frame rather than an arbitrary one. As a result, normalization determines the errors

to be minimized, so that correspondences are measured in the image coordinate. This

effect is related to the condition of the system of the DLT equations. The condition is

represented as the ratio ofd1/dn−1 of the first to the second last singular value of the

matrixT, and it should be made small forT to be well-conditioned [8, 9]. The other is

that normalization process makes an algorithm invariant to similarity transformations

of the image where there are translation and scaling changes of image coordinates.

While the complete description of the normalized DLT algorithm is found in [9], the

resulting algorithm is also summarized in Algorithm 2 and the implementation result

is shown in Figure3.1.

3.4 KLT: Kanade Lucas Tomasi tracker

In this section, we present a well-known feature tracker, called KLT [1, 30, 31, 33].

Although the objective of KLT is to track features, their approach is unique in such a

way that, instead of tracking single pixels that individually represent a certain feature,

they track “windows” of pixels that contain sufficient texture. We can summarize the

framework of KLT by explaining models of image motion, how to compute image

motion based on its models, and the process of selecting features that KLT can track

well.

24



Algorithm

Given a set ofn 2D to 2D point correspondences,xi ↔ x′i (n ≥ 4 andi = 1 . . . n),
determine the 2D homographyH such thatxi = Hx′i.

(1) Normalization of xi:
Compute a similarity transformationS that transforms pointsxi to a new set of
pointsx̃i. The transformation consists of the following translation and scaling:

• Translation:
the centroid ofxi is translated to the origin(0, 0)>

• Scaling:
xi are scaled so that the average distance from the origin is

√
2

(2) Normalization of x′i:
Compute a similarity transformationS′ for the pointsx′i in the second image
independently from the first one, and transformx′i to x̃′i.

(3) DLT:
Perform the DLT algorithm oñxi ↔ x̃′i to obtain a homographỹH.

(4) Denormalization:
H = S′−1H̃S

Algorithm 2: The normalized DLT algorithm for 2D homographies excerpted
from Hartley and Zisserman [9]
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(a) The original image

(b) The correspondences on the rink map

(c) The transformation result

Figure 3.1:Homography Transformation

This is the demonstration of Algorithm 2 on hockey data. (a) is the original image
(320× 240) to be transformed. Those points beside the numeric number are the man-
ually selected points that are corresponding to those on the rink in (b). The correspon-
dences are paired up by the numeric number. (c) is the result (1000 × 425) of the
transformation by Algorithm 2, which shows a successful transformation of homogra-
phy given a set of manually selected 13 point correspondences.
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3.4.1 Modeling Image Motion

The model of image motion which KLT is based upon plays a crucial role of how good

the quality of tracking is. Tomasi and Kanade [33] formalize the complex pattern of

image intensities by the following property:

I(x + ξ(x, y, t, τ), y + η(x, y, t, τ), t + τ) = I(x, y, t) (3.8)

where the space variables,x andy, and the time variable,t, are discrete and suitably

bounded. In other words, Eq. (3.8) represents the correlation of images taken within

short time intervals, and captures the same scene from slightly different view points.

A later image taken at timet + τ differs from an image taken at timet by the amount

of motion depicted byδ = (ξ, η)>, which is also referred as the “displacement” of the

point atx = (x, y)> between time instants,t andt + τ .

It is known, however, that the property of the Eq. (3.8) does not hold well

even in a static environment under constant lighting. This is due to frequent changes

of points at occluding boundaries (e.g. disappearance and reappearance of points) and

the photometric changes over the appearance of a visible surface when reflectivity is a

function of the viewpoint. Those difficulties are reduced at surface markings that are

away from occluding boundaries where the invariant of Eq. (3.8) is by and large satis-

fied. At these locations, it is still difficult to track a single pixel due to abrupt changes

of the image intensity withx andy, and confusing adjacent pixels with noise.

In order to overcome these problems, it naturally makes sense to track “win-

dows” of pixels instead of a single pixel. Considering the fact that the amount of

motion,δ, is a function with respect to the image positionx, for given timet andτ , it

is still a constant function ofx. Since there are different displacements within the same

window, a better description of motion needs to be defined that could associate a set

of different velocities at different points within the window. Shi and Tomashi [30, 31]

introduce theaffine motionmodel, which compromises well between simplicity and

flexibility, expressed as follows:

δ = Dx + d
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where

D =

dxx dxy

dyx dyy

 d =

dx

dy


D is a deformation matrix, andd is the translation of the feature window center. If

the image coordinatesx are measured with respect to the center of the window, then a

pointx in the first image moves to pointAx + d in the second imageJ , such that:

A = 1 + D

where1 is the2× 2 identity matrix. Now, the model can be simply written as:

J(Ax + d) = I(x) (3.9)

Between two given images,I andJ , tracking means to solve Eq. (3.9) for the

deformation matrixD and displacement vectord. Tomasi and Kanade [33] discover

that, for tracking, smaller windows produce the better result because they are less likely

to straddle at a depth discontinuity. However, the deformation matrixD becomes

harder to estimate when the size of the window is small where the variations of motion

are small and less reliable. As a consequence, a simpler model of motion, thepure

translationmodel, is introduced in [30, 31, 33]:

J(x + d) = I(x) (3.10)

where the deformation matrixD is assumed to be zero. Here, tracking means simply to

determine two parameters of the displacement vectord of the feature window center.

The system of KLT, which uses small windows for tracking, applies thepure trans-

lation model under the assumption which the inter-frame displacement is sufficiently

small with respect to the texture fluctuations within the window. In our implementa-

tion, the size of the feature window is set to7× 7.

3.4.2 Computing Image Motion

With thepure translationmodel of motion, we can now derive and compute the equa-

tion to solve for tracking. In Appendix C of [1], Birchfield describes the derivation

of the symmetric KLT tracking equation that is originally proposed by Tomasi. As it
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is described in the previous subsection3.4.1, tracking is to solve Eq. (3.10) for the

displacement vectord = (dx, dy)>, which minimizes the following dissimilarityε of

two feature windows in given images,I andJ :

ε =
∫ ∫

W
[J(x +

d
2

)− I(x− d
2

)]2w(x) dx

wherew is a weighting function. Simply,w could be set to 1 or alternatively be a

Gaussian-like function to emphasize the central area of the window. In our implemen-

tation of KLT, we setw = 1.

The truncated Taylor series expansion of an imageJ about a pointp = (px, py)>

gives the following linear term:

J(ξ) ≈ J(p) + (ξx − px)
∂J

∂x
(p) + (ξy − py)

∂J

∂y
(p) (3.11)

whereξ = (ξx, ξy)>.

According to the derivation in [30, 31], if we let x = p andx ± d
2 = ξ, then

Eq. (3.11) may be written as:

J(x +
d
2

) ≈ J(x) +
dx

2
∂J

∂x
(x) +

dy

2
∂J

∂y
(x) (3.12)

similarly for an imageI:

I(x− d
2

) ≈ I(x)− dx

2
∂I

∂x
(x)− dy

2
∂I

∂y
(x) (3.13)

with Eq. (3.12) and (3.13):

∂ε

∂d
= 2

∫ ∫
W

[J(x +
d
2

)− I(x− d
2

)][
∂J(x + d

2 )
∂d

−
∂I(x− d

2 )
∂d

]w(x) dx

≈
∫ ∫

W
[J(x) + I(x) +

1
2
g(x)>d]g(x)w(x) dx

(3.14)

where the image gradient vectorg is defined as:

g(x) =

 ∂
∂x(I + J)
∂
∂y (I + J)


In order to determine the displacement vectord, Eq. (3.14) is simply set to be

zero:
∂ε

∂d
≈

∫ ∫
W

[J(x) + I(x) +
1
2
g(x)>d]g(x)w(x) dx = 0
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terms may be rearranged to perform one iteration of Newton-Raphson minimization

as follows:∫ ∫
W

[J(x) + I(x)]g(x)w(x) dx = −
∫ ∫

W

1
2
g(x)>dg(x)w(x) dx

= −1
2
[
∫ ∫

W
g(x)g(x)>w(x) dx]d

(3.15)

for simplicity, Eq. (3.15) is expressed as:

Zd = e (3.16)

where the2× 2 matrixZ and the error vectore are defined as:

Z =
∫ ∫

W
g(x)g(x)>w(x) dx

e = 2
∫ ∫

W
[I(x)− J(x)]g(x)w(x) dx

Tracking is complete after repeatedly solving Eq. (3.16) and shifting feature

windows by the displacementd.

3.4.3 Feature Selection Criterion

For successful tracking, ”good” features are required in order for Eq. (3.16) to be nu-

merically well-conditioned. Tomasi and Kanade [33] define the quality of the feature

based on the tracking method they use. That is, ”good” features are ones that can be

tracked well by the method of tracking. In terms of the notion of KLT tracker, ”good”

features are ”windows” of pixels that can be tracked well.

In order to select ”good” feature windows, two requirements need to be satis-

fied. The2 × 2 coefficient matrixZ in the system of Eq. (3.16) must meet the image

noise criterion and be well-conditioned. In other words, the noise requirement has two

eigenvalues ofZ to be large, and the conditioning requirement disallows them to be

differed by several orders of magnitude.

According to [33], in practice, the matrixZ is well-conditioned if a smaller

eigenvalue ofZ is sufficiently large to meet the noise criterion. Since the intensity

variations in a window are bounded by the maximum allowable pixel value, the greater

eigenvalue cannot be large. Two large eigenvalues imply a ”good” feature, such as
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corners, salt-and pepper texture or any other pattern that can be tracked reliably. Con-

sequently, the following criterion can be formulated:

min(λ1, λ2) > λthresh (3.17)

whereλ1 andλ2 are two eigenvalues ofZ andλthresh is a predefined threshold.

The lower bound ofλthresh is determined by measuring the eigenvalues for

images of a region under approximately uniform brightness, while the upper bound

is determined by selecting a set of strong features, such as corners or highly textured

region. In practice, the two bounds are found to be separate enough that choosing

the value ofλthresh between two bounds is trivial. Based on our experiments, we set

λthresh = 1 to discard feature windows that have a smaller eigenvalue less than 1.

The chosen value works well because not only does it keep reliable features but also

discards unreliable features that are hard for the KLT tracker to track. After all, the

feature selection criterion of KLT is optimal by construction because of its foundation

based on how the tracker works and features that correspond to the points in the real

world [30, 31, 33]. The algorithm of KLT is summarized in Algorithm 3.

In Figure3.2, (c) is the image contains 761 KLT features to be successfully

tracked and 439 features to be lost a track of from Frame 58 to Frame 62. The majority

of features is detected and tracked on texture rich regions. As is shown in the figure,

there are many features that are distributed uniformally on a feature-less region of the

rink (i.e., the white surface of the rink). This raises the question of whether these

features provide reliable tracking or not. In our experiments, we test our rectification

system with various numbers of features ranging from 700 to 1200. We determine the

number of features as 1200 because it provides the best result. In order to have features

that are spatially well spread out over the entire region of the image, we need to have

a large number of KLT feature extracted. Since the KLT tracker ranks features based

on their trackability (i.e, how easy it is for the tracker to track), most of the features

that are in a high rank are concentrated on texture-rich regions of the image such as

players, a scoring board on a TV, or audience. Therefore, if we extract a small number

of KLT features, then we do not gain many KLT features from the rink features such

as logos, lines , and cirlces. For some frames, we don’t need to extract 1200 features

to have a spatially well distributed set of KLT features. However, for other frames
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Algorithm

Given two images,{I(xi)}i=1···N and{J(xi + di)}i=1···N such thatxi = (xi, yi)>

anddi = (di,x, di,y)>, taken at near time instants, the objective is to determine the
displacement vector{di}i=1···N for each ofN feature windows.

(1) Selection of features:
The following steps selectN best feature windows from an imageI.

• Computing image gradients:

– Place the center of the feature window inI and, at each location, com-
pute image gradients in both x and y direction to determine the matrix
Z in Eq. (3.16).

• Apply the feature selection criterion:

– Compute trackability of each image pixel as the minimum of two
eigenvalues of the matrixZ.

– Sort all the feature window based on trackability and discard ones that
do not satisfy the minimum trackability in Eq.(3.17), or ones close by
the better window.

(2) Tracking:
Tracking means determining two parameters for the displacement vector
{di}i=1···N .

• Computing image motion:

– Compute the error vector{ei}i=1···N in Eq. (3.16) for N selected
feature windows.

– Solve Eq. (3.16) for the displacement vector{di}i=1···N .

• Shifting feature windows:

– Shift N feature windows inI by the displacementd and start the next
search at the new locations inJ .

Algorithm 3: KLT
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(a) Frame 58 (b) Frame 62

(c) KLT features to be tracked or to be lost a track of from frame 58 to 62

Figure 3.2:KLT tracking result

The KLT tracker is used to track KLT features from the image in (a) to the one in (b).
(c) is the result of the tracker. Lighter dots are features successfully being tracked and
darker dots are failed to be tracked. These three images are in the size of320× 240.
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with many players or a large audience in the scene, we need to extract 1200 features

to gain a spatially well distributed set of KLT features. As a result, we choose to

extract 1200 features to make our rectification system so that we can constantly gain

a set of features well spread out on the entire region of the image. The answer to the

previously addressed question is no. For some frames, we extract KLT features that

are on uniform parts of the rink and they do not provide us reliable tracking. Since we

need to extract 1200 features for always acquiring a spatially well distributed set of

features, we determine to extract 1200 features and discard these features on uniform

regions of the rink whenever we get them.

3.5 Further improvement

There are some conditions when KLT tracker works poorly. Those specific conditions

are often due to rapid camera motions and occasional camera flashes. In order to make

KLT tracker more robust to rapid motions of camera and drastic intensity changes by

camera flashes, we introduce a method of “predicting” camera motions and detecting

camera flashes by observing the amount of intensity changes in each frame.

3.5.1 Camera flash detection

As Chapter 1 introduces the camera flash as one of vision problems, it causes a drastic

intensity change over all pixels in an image and is preferred to be avoided if necessary.

Figure3.3 shows the average intensity of each frame over 2300 frames. The vertical

axis indicates the number of the intensity ranging from 0 to 255 where 0 indicates a

dark pixel and 255 is a bright pixel, and the horizontal axis is the number of the frame.

In the graph, there are several sudden spikes which indicate that there is a camera flash

for that particular frame. One can also observe that each spike makes a jump that

results in increasing the average intensity by at least 15.

With our observation of camera flashes, we formulate a simple flash detection

method by taking the difference of the average intensity from two separate images.
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Figure 3.3:the average intensities over 2300 frames

Given two images,I andJ , we compute the average intensity of these two images:

Ī =

∑width
x=1

∑height
y=1 I(x, y)

width× hight

J̄ =

∑width
x=1

∑height
y=1 J(x, y)

width× hight

whereI(x, y) means the intensity of the pixel located at(x, y). Now we define a

simple binary functionΦ:

Φ =


0 if |Ī − J̄ | > 15,

1 otherwise

where if Φ = 0, then a camera flash is detected. Although this detection scheme is

quite simple, it works well for our purpose of avoiding occasional flashes.
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3.5.2 Prediction

We can improve KLT feature tracker bypredictingcamera motion and make the tracker

even better. We define thepredictionby using the previous camera motion to estimate

the current camera motion. For instance, given a frame-to-frame homographyH1,2

that depicts the camera motion from Frame 1 to Frame 2, we useH1,2 as the estimation

of H2,3 so that we apply KLT feature tracker on Frame 2’(i.e., Frame 2 transformed

by the inverse ofH1,2) and Frame 3 instead of Frame 2 and Frame 3. That is, we have

the following assumption:

Hn,n−1 ≈ Hn+1,n

where we process every single frame without skipping any andHn−1,n means a ho-

mography from Frame n-1 to Frame n. This assumption holds if we don’t skip many

frames. Since we skip at most 5 frames to process data sampled at 30 frames per sec-

ond, there is hardly any change in a motion of a camera within one sixth of a second

and thus we could hold the assumption. Thispredictionstep decreases the amount

of motion between frames and helps KLT feature tracker to track on moving features.

KLT feature tracker is, after all, a simple correlation tracker and thus, by controlling

the amount of motion of moving objects, we can easily make the performance of the

tracker better.

Figure3.4shows the number of KLT features successfully being tracked with

and withoutprediction. The original number of KLT features chosen at each frame is

1200. We set the frame step as 4, that is, the original sequence is processed every fourth

frame at a time. For example, Frame 35 means the 35th frame to be transformed from

the original sequence. Therefore, data in Figure3.4has the record of 200 transformed

frames computed from about 800 frames of the original sequence. In order to avoid any

confusions, we refer to the frame number of the transformed sequence for the rest of

this section. As it is shown in the figure, in the beginning of the sequence, the detection

of many features shows a small camera motion between frames. After Frame 15, there

are constant camera motions because the number of features found varies between 700

and 950. The most important remark on this graph is that, on Frame 35, there is a huge

gap between the number of features found with and without prediction.
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Figure 3.4:KLT features successfully being tracked with and without prediction

Figure3.5shows the effect ofpredictionand what happens in Frame 35 where

there is a large camera motion. In the first row, the image in (b) is the same image

as in (a) shifted toward left byprediction. This reduces the amount of motion to the

next frame shown in the second row. (a) shows 537 KLT features (lighter dots) to be

tracked. (b) has 805 KLT features to be tracked. Both (a) and (b) has 1200 KLT fea-

tures in total to be selected by the tracker. By reducing the amount of motion between

two frames, there are 268 more features to be successfully tracked withprediction.

The images in the third row show clearly how much camera motions are reduced by

displaying how long the trace of each feature is. The effect ofprediction depends

on the amount of camera motions between frames. Larger camera motions are, the

more effectiveprediction is. We show that if there is a reasonable amount of camera

motions, thenpredictionhelps KLT tracker to track features in the image. The most

important contribution ofprediction is that it prevents large projection errors by re-

ducing camera motions and helping KLT tracker to track features between frames so

that a more reliable set of correspondences is obtained. Since we automate the pro-
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(a) withoutprediction (b) with prediction

Figure 3.5:KLT tracking result on Frame 35

(a) is the result of KLT tracking withoutprediction. (b) is the result of KLT tracking
with prediction. They are all the result of KLT tracking result on Frame 35. Each row
shows the frames before KLT tracking, the frames with KLT features tracked or not
tracked, and the final set of inliers with their trace to describe camera motions between
frames. The images in the third row are the result obtained by Algorithm 5 explained
later in Section3.6. They are presented here only to show how large the difference of
camera motions is between (a) and (b).
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cess of gaining frame-to-frame homographies, it is crucial to prevent large projection

errors by which the automatic process might fail. In general, by reducing camera mo-

tions between frames,predictionmakes the tracker better or at least as good as the one

without, and more importantly, prevents occasional large projection errors due to large

camera motions.

3.6 Algorithm

This section explains our algorithm of automatically computing 2D homographies

using KLT for tracking correspondences between images, RANSAC for eliminating

unreliable features (i.e. outliers), and the normalized DLT algorithm for calculating

homographies.

3.6.1 Acquisition of correspondences

For successful homography computation, it is crucial to have a reliable set of point

correspondences that gives an accurate homography. KLT gives those correspondences

automatically by extracting features and tracking them. That is, those features that are

successfully tracked by KLT between images are ones that are corresponding each

other. We can easily eliminate obvious outliers by discarding features that KLT loses

a track of.

3.6.2 RANSAC: Elimination of outliers

Correspondences gained by KLT are yet imperfect to estimate a correct homography

because they also include outliers. Though an initial set of correspondences selected

by KLT contains a good proportion of correct matches, the RANSAC algorithm is used

to eliminate even more of unreliable correspondences and obtain a better homography.

In the RANSAC algorithm, we produce a putative set of correspondences by a ho-

mography based on a random set of four correspondences, and use the homography to

eliminate outliers.
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Sample Selection

In the process of selecting a random set of four correspondences, there are several

issues to be dealt with, such as avoiding a degenerate homography and determining

when to terminate sampling. In order to avoid choosing three collinear points to pro-

duce a degenerate homography, we implement distributed spatial sampling by ensuring

that each sample is from a different region of the image. In our experiments, we divide

a320× 240 image into four sub-regions of an equal size of80× 60, so that each point

correspondence is sampled from a different sub-region. Once four point correspon-

dences are sampled with a good spatial distribution, we calculate a homography based

on those correspondences and use the homography to select an initial set of inliers. For

inlier classification, we use the symmetric transfer errord2
transfer, defined in [9]:

Let x ↔ x′ be the point correspondence andH be a homography such that

x′ = Hx, then

d2
transfer = d(x,H−1x′)2 + d(x′,Hx)2 (3.18)

whered(x,H−1x′) represents the distance betweenx andH−1x′. After the symmet-

ric transfer error is estimated from each point correspondence, we then calculate the

standard deviation of the sum of the symmetric errors from all correspondences, which

is denoted byσerror and defined as:

Suppose there areN point correspondences and each one of them has the sym-

metric transfer error{d2
transfer}i=1...N , then:

σerror =

√∑
1≤i≤N ({d2

transfer}i − µ)2

N − 1
(3.19)

whereµ is the mean represented as:

µ =

∑
1≤i≤N{d2

transfer}i

N

Now we can classify an outlier as any pointxi that satisfies the following condition:

γ(xi) =


0 {d2

transfer}i ≥
√

5.99 ∗ σerror (outlier)

1 Otherwise (inlier)
(3.20)

whereγ is a simple binary function that determines whether the pointxi is an outlier.

The constant real number,
√

5.99, is user-defined, and chosen to make the criteria of
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selecting outliers to be neither too tight nor too loose so that a reasonable number of

inliers can be selected.

Adaptive algorithm to terminate sampling

Once we know how to sample four spatially distributed correspondences and classify

inliers and outliers, we need to determine when to stop sampling so that we can avoid

unnecessary computation. For that purpose, We implement an adaptive algorithm for

determining the number of RANSAC samples, that is introduced in [9]:

Algorithm

(1) Initialization:
Set the number of selectionsN = ∞, the number of samplesSn = 0, the
sample sizes = 4 and a probabilityp = .99.

p is the probability that at least one of the random samples ofs points is
free from outliers.

(2) Iteration:
While N > Sn

• Select a sample of four point correspondences and count the number of
inliers based on the criterion in Eq.(3.20)

• Setε = 1− (number of inliers)/(total number of points)

• SetN = log(1− p)/ log(1− (1− ε)s)

• SetSn = 1 + Sn

• Repeat

Algorithm 4: Algorithm for adaptively determining the number of RANSAC sam-
ples referred from Harltey and Zisserman [9]

As it is shown in Algorithm 4,ε is the probability that any selected data point is an

outlier. Therefore, the derivation ofN with respect toε, p ands is now straightforward

from (1 − (1 − ε)s) = 1 − p. This adaptive algorithm gives us a homography that

produces the largest number of inliers by adaptively determining the termination of

the algorithm and saving unnecessary computation. Please refer to [9] for more details,

where Harley and Zisserman show that the algorithm works well in practice.
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3.6.3 Further estimation: Selection of best inliers

Once the adaptive algorithm produces an initial set of putative correspondences deter-

mined by selecting four spatially distributed point correspondences and a homography

based on those points, we can refine the set by eliminating points with a large amount

of the symmetric transfer error in Eq.(3.18) and making a set of better inlying matches.

The aim of this further estimation is, therefore, to obtain an improved estimate of a ho-

mography with better inliers. It is quite possible because the error is now based on a

homography for randomly selected 100 point correspondences of the set, unlike the

RANSAC algorithm where the error is based on a homography for only randomly se-

lected four point correspondences.

The process of the further estimation is that at each iteration, we estimate a

homography with a set of 100 randomly selected point correspondences that are con-

sidered to be inliers, classify a set of all correspondences based on our simple classifier

in Eq.(3.20) and update a set of inliers. We repeat the process until the symmetric error

of all the inlier becomes less than
√

5.99 ∗ σerror. An important remark of this esti-

mation process is that we always take an initial set of correspondences into account

without eliminating any one of them so that we don’t miss the opportunities of some

outliers being re-designated as inlilers.

Our algorithm of automatically computing 2D homographies is summarized

in Algorithm 5. Figure3.6shows the final set of inliers selected in the process of the

further estimation. In (b), it is shown clearly that our algorithm eliminates outliers

successfully by selecting features only from static objects (i.e., features on the rink) in

the image. The white dots are features to be selected and a black lines represent the

trace of the feature. In this case, a black line is not so visible because there is not much

camera motions. Figure3.7 shows how successfully our algorithm captures a variety

of camera motions. As it is shown, a trace of features show how features move from

one frame to the other.
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Algorithm

(1) Flash Detection:
Apply our simple flash detector in Section3.5.1to avoid camera flashes. If a
flash is detected in the image, skip that image and proceed to the next.

(2) Prediction:
Transform the current frame by using the previous homography and reduce cam-
era motions.

(3) KLT:
Apply the KLT tracking system to gain an initial set of correspondences
{Ci}i=1...N whereN is the number of point correspondences.

(4) RANSAC:
RepeatT times, whereT is determined by the adaptive algorithm, Algorithm 4.

• Choose four point correspondences with a good spatial distribution

• Estimate a homographyH4pts

• UsingH4pts, estimate the symmetric transfer error{d2
transfer}i=1...N from

Eq.(3.18) and the standard deviation of the errorσerror from Eq.(3.19)

• For classifying inliers, apply a binary functionγ from Eq.(3.20) and count
the number of inliers

• Repeat

Choose the homographyH4pts with the largest number of inliers and update
{Ci}i=1...N .

(5) Further estimation:
Let {Ii}i=1...IN

be a set of inliers and setI = C initially.
Repeat until{d2

transfer}i=1...N <
√

5.99 ∗ σerror

• Perform the normalized DLT algorithm to estimate a homographyH from
a set of 100 randomly selected point correspondences considered to be
inliers{Ii}i=1...IN

• Using H, estimate {d2
transfer}i=1...N and σerror for all points in

{Ci}i=1...N

• Apply γ and update a set of inliers{Ii}i=1...IN

• Repeat

The final estimation is the homographyH at the last iteration.

Algorithm 5: Algorithm for the automatic homography computation
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(a) KLT features (b) the best set of inliers selected in Algorithm 5

Figure 3.6:Best inliers selected in Algorithm 5

(a) is the image with KLT features both successfully tracked (light dots) and ones that
are not successfully tracked (black dots). (b) is the result of Algorithm 5 after its
successful outlier elimination. It is successful because all of the best inliers selected
are on the rink and none of the features on moving objects is selected.

3.7 Model fitting

Although Algorithm 5 captures camera motions between frames reasonably well, there

is still a difficult issue remained to be dealt with: we need to reduce the error accu-

mulation of frame-to-frame homographies over time. As Intille [11] points out, it is

still true that lens distortion and image processing limitations lead to imperfect image

rectification process. However, even if we cannot get the perfect rectification result,

we can still minimize the amount of error accumulated over time. That is, we make a

use of the domain knowledge by using the rink features as the model.

3.7.1 Model

We implement model fitting to the result of homography transformation gained by Al-

gorithm 5. Figure3.8shows our model of the rink. The rink dimensions and our model

are strictly based on the official measurement presented in [10]. We define features on

lines and circles of the rink and use them as our model. According to the official NHL

rulebook [10], the measurement between two blue lines in the center of the rink varies

by different stadiums. Since a difference of even 2 feet might cause a failure of our

vision system, we need a careful selection of data for the implementation. In our ex-

periment, we select data that is taped from stadiums that have the fixed measurement
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(a) camera panning toward right (b) camera panning toward left

(c) camera tilting up (d) camera tilting down

(c) camera zooming in (d) camera zooming out

Figure 3.7:Different camera motions

These images are the result of our algorithm that shows the extraction of different
kinds of camera motions. The trace of features shows how each feature moves from
the previous frame to the current frame. For zooming in or out, features move toward
or away from the center of focus.
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of 54 feet in-between blue lines.

With the model in Figure3.8, we can now correct our projected image to fit

the real dimensions of the rink and reduce projective distortions.

3.7.2 Edge search

This section describes how we fit projected images produced by Algorithm 5 to our

model of the rink. In order to fit the projected images to the model, we perform a local

search on each model point appeared within the region of each projected image. The

local search is conducted to find the nearest edge pixel in the image. Figure3.9shows

how to fit the projected image to our rink model.

It is true that the projected point is the nearest edge pixel found from the local edge

search performed on each model point and thus there is a possibility that the projected

point may not be the true correspondence of the model point. This concern is true if

the projected images are too distorted to match the model. However, in our case, it still

works because Algorithm 5 gives us an approximate solution that is good enough to

project the original image sequence close to the model of the rink. For edge detection,

the search is performed locally only on high gradient regions in the original sequence

where there are most likely edges. We do not perform the edge detection for the entire

image region in order to save on the computational time. After the edge search is

focused on high gradient regions, then edge orientation is considered to find a most

likely edge pixel. Given an image,I, the image gradient vectorg is represented as:

g(x) =

 ∂
∂x(I)
∂
∂y (I)


The gradient vector represents the orientation of the edge. The orientation varies on

whether edges compose lines or circles. For circles, the orientation is tangent of the

circle. For lines, it is perpendicular to the direction of the line. Figure3.10shows the

orientation of two edges that form a thick line in the image. Since lines and circles of

the hockey rink are not single edges but thick lines, they give two peaks of gradients.

We compute the image gradient vectorg of the original image because the projected

image may not give accurate gradients due to resampling effects. Figure3.11shows

how the edge search is conducted.
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(a) Official dimensions of rink surface

(b) Model of the rink

Figure 3.8:Model of the rink based on the official NHL measurement

(a) has details of the official measurement of the rink. These images are from [10].
(b) is the model of the rink based on the NHL official measurement. The model of the
rink is basically the set of points on circles and lines on the rink surface. There are
296 features in total: 178 features on four End-Zone circles, 4 features on center ice
face-off spots around the center circle, and 114 features on lines.
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Model point

Projected point

Figure 3.9:Fitting a projected image to our model of the rink

Dotted lines represent the projected image and solid lines represent the model. Al-
though only two examples of matching a projected point to a model point are pre-
sented in this image, we perform a local search for finding the nearest edge pixel (i.e.,
a projected point) from all model points appearing within the projected image.

20

Normal vector (Edge orientation)

Edges

Figure 3.10:Edge orientation

The orientation of the edge is represented as the normal vector (i.e., gradient vector)
that is perpendicular to the edge. We set the threshold as20◦ to match the orientation.
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(a) player blobs (b) searching edges on high gradient regions

(c) Edge points found by the search

Figure 3.11:Searching edges

(a) is the image of detecting player’s blobs by simply finding dark regions of the image.
Those dark regions are avoided for the edge search because the edges of the player give
erroneous information. (b) shows the search regions (lighter points) and high gradient
regions (darker points). It is shown that high gradient regions lie on edges we want to
find. (c) is the result of the edge search. It shows how successfully our search detects
edge points for each model points.
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As it is shown in the above figure, the edge search does not perfectly detect all the

edge pixels on the rink surface. For instance, in (c) of Figure3.11, there is one edge

pixel that does not belong to any lines in the left bottom face-off circle. Furthermore,

there are not many edge points detected on the center circle since there are many gra-

dient peaks detected on the line of the circle, the edges of the logo, and the edges of

the letters. In order to avoid finding edge points that are not on the edge of the cir-

cles or lines on the rink, our edge search ignores ambiguous regions with many edges

by detecting multiple gradient peaks in the search region. Givenn edge points found

by our edge search, these points can be used to compute a transformation,Hcorr, to

rectify a projected image to the model. We use the normalized DLT algorithm to com-

puteHcorr based on 2D to 2D point correspondences{xEdge
i ↔ xModel

i }i=1...n where

{xEdge
i }i=1...n denoten edge points detected by our edge search and{xModel

i }i=1...n

aren corresponding model points. Overall, our edge search gives us reliable perfor-

mance and can prove that our model fitting mechanism works well. The next section

shows the effect of the model fitting.

3.7.3 Result

This section shows how much our model fitting mechanism can reduce error accumu-

lation. In order to justify the effectiveness of the mechanism, we show the result with

and without the model fitting. Figure3.12shows two different transformation results.

As it is shown in the above figure, our algorithm is applied to process over

300 frames. Without the model fitting, the result shows a large projective distortion

accumulated over time. By correcting errors at every frame, the model fitting success-

fully reduces projective distortions and prevent the accumulation of errors. The result

therefore shows the effectiveness of our model fitting algorithm.

3.8 Rectification system

In this section, we summarize our rectification algorithm and introduce how to incor-

porate the algorithm into our vision system of acquiring trajectories of hockey players.

Figure3.13shows the summary of our algorithm to rectify a sequence of hockey video.
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(a) The result without fitting the model

(b) The result with fitting the model

Figure 3.12:The result of our model fitting

(a) is the result after 323 frames without using the model fitting mechanism. (b) is the
result after 323 frames with the model fitting mechanism. It clearly shows how much
projective distortion is reduced over 300 frames in (b).
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Figure 3.13:The process of automatic homography calculation

This is the picture that summarizes how our algorithm is implemented to transform a
sequence. First we manually select the correspondences to gain the transformation to
the rink map and then use Algorithm 5 to gain frame-to-frame homographies while
detecting camera flashes and predicting camera motions.

We use manually selected points to gain the mapping between the very first frame of

the sequence and the rink map. Then Algorithm 5 is applied to compute a frame-to-

frame homography. Then we use the model fitting to correct and reduce the accumu-

lation of errors over time.

Here, we denote the homography with manually selected correspondences between the

projected image and the very first frame of the sequence asHToRink and the frame-

to-frame homography that maps Frame n to Frame n-1 asHn,n−1. The homography

gained by the model fitting is denoted asHn
corr where n is the number of the current

frame to be processed sinceHn
corr is updated every frame we process. Given that, we

can express the process of our algorithm of automatically computing homography as

the chained homography below:
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Hn,Rink = Hn
corrH

n−1
corr . . .H2

corrH
1
corrHToRinkH2,1H3,2 . . .Hn,n−1

whereHn,Rink means the transformation from Frame n to the rink map (i.e., the final

projected image). As the chained homography expands in both directions, the set

of correction homographies (i.e.,Hn
corr . . .H1

corr) reduces the accumulation of errors

produced from the set of frame-to-frame homographies (i.e.,H2,1 . . .Hn,n−1).

This rectification process plays a major role of the whole system with the following

two reasons. Firstly, the result of the rectification determines the relationship between

the original hockey video sequence and the rink map. Secondly, the automation of

this process leads to the great savings of time because the rectification is a tedious and

time consuming task to be done manually. Figure3.14describes the whole system and

shows how the rectification process is incorporated into the system.

Rectification

Tracking 

TrajectoriesVideo Source

Figure 3.14:System for acquiring trajectories of hockey players

This is a simple presentation of our system. As it is shown, our system has two major
components to create the final result.

3.9 Result

This section presents the result of our rectification process. Figure3.15shows the suc-

cessful transformation automatically achieved over 500 frames. Although the result is

quite satisfactory, the only bottleneck of the system is the computational time. This is

due to the computation of singular value decomposition in the process of the further
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estimation after RANSAC. Since we set the number of initial KLT features as 1200,

there is an iterative process of estimating the best set of inliers from over 800 features.

That means to perform the least square minimization on over800 × 800 dimensions

multiple times. Although we consider reducing the initial set of inliers, our experi-

ments convince us to use 1200 features for the best result. The computational time is

about 1 CPU hour to process 250 frames on PCs with 2.66 GHz Pentium 4 CPUs, 1GB

RAM.

3.10 Limitations

Although our rectification system has the mechanism of reducing image processing

errors at running time, there is a limitation on the quality of its performance. In this

section, we analyze the accumulation of errors caused by frame-to-frame homogra-

phies and cases of which our rectification algorithm fails.

Our rectification system most likely fail in the following circumstances: when

some of hockey data have feature-less regions where there are no features to be de-

tected, and when camera motions are fast enough to blur visual features in the image.

In the former case, features tend to be concentrated on a few texture rich regions when

feature-less regions occupy the majority of the image. As a result, homographies, com-

puted based on features that are not well spatially distributed, do not capture camera

motions between frames well. If the amount of errors from frame-to-frame homogra-

phies is large enough for our model fitting method to be failed, then our system would

not work. In the latter case, when rapid camera motions blur the image, many KLT

features are easily lost by KLT tracker and we do not gain a reliable set of inliers for

computing homographies. Furthermore, it becomes extremely difficult to detect true

edges in blurred images. Consequently, it happens that not only frame-to-frame ho-

mographies are erroneous but also our model fitting method fails to detect edge points

due to low resolution images.

In order to resolve the limitation of our system, we suggest to define the stop-

per of our program, i.e., the method to terminate our program when a large error occurs

in the process. We could detect the large errors by monitoring the errors between the
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(a) Frame 1

(b) Frame 200

(b) Frame 545

Figure 3.15:Result of our rectification system

Our system is applied to over 500 frames and successfully transform the sequence.
Each of the image contains the rink mode in the background to show a high accuracy
of the result. The original data is sampled at 30 frames per second, being digitized and
deinterlaced.
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projected image and the model of the rink map. The error per each model point is

computed by averaging the total error distance between the projected image and the

model based on the number of edge points found. This error measurement, however,

has a problem: it could catch the large projection errors of over 10 pixels, but tend to

ignore smaller projection errors. That is, the program does not terminate itself until

a large error accumulation is detected. For the faster and more accurate detection of

error accumulations, we currently investigate further to find alternatives for a better

error detection.

3.11 Conclusion

Our rectification system captures camera motions by the automatic computation of ho-

mograhies and computes transformations between the original sequence in broadcast

video and the globally consistent map of the hockey rink. We demonstrate the robust-

ness of our system by showing the rectified sequence of over 500 frames in Figure

3.15. Our system accomplishes a highly accurate registration of the images regardless

of many vision problems. We believe that our system is also applicable for other do-

mains of sports, such as soccer and football. In the next chapter, we explain how to

track hockey players and show their trajectories by combining transformations com-

puted by our rectification system and tracking results obtained by our tracker.
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Chapter 4

Tracking

4.1 Introduction

This chapter presents the other major component of our hockey annotation system:

how to track hockey players and estimate their position on the hockey rink. In Chapter

3, we show how to remove rapid and non-smooth motions of broadcast cameras and

register the original broadcast video sequence to the globally consistent map of the

hockey field. In order to estimate real world positions of hockey players and generate

their trajectories, we now need to track them. Our tracking method is an improved

and extended version of the state of art color-based sequential Monte Carlo tracking

method proposed in [25]. We use an adaptive multi-color model to improve the existing

state of art color-based tracking and extend it to the multiple object tracking.

4.2 Initialization

In order to perform the tracking of hockey players, it is necessary to know where they

are initially. We have three possibilities to consider: either manual initialization, semi-

automatic initialization, or automatic initialization. For complicated models or objects

with a constantly moving background, manual initialization [2, 11, 25, 28] is often

preferred. However, even with a moving background, if the background is a uniformly

colored region, then semi-automatic initialization can be implemented [20]. Misu et.

al performs a semi-automatic initialization by automatically detecting isolated objects

based on the difference between the color information of the object appearance (i.e.,
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the uniform of soccer players) and the background (i.e., uniformly green soccer turf)

and manually initializing overlapping objects. Automatic initialization is possible in

many circumstances, such as smart environments [12, 37], surveillance [25, 26], sports

tracking with a fixed background [3, 21, 38] or other situations with a fixed camera and

a fixed background [25]. Wrenet. al [37] uses the background model and detect their

targets based on a large intensity change in the scene and the distribution of color on

the appearance of an object. Perezet. al [25] demonstrates the use of background

model to detect a person who enters in a room with a surveillance camera. Needham

and Boyle [21] uses the foreground model (i.e., soccer players) and the background

model (i.e., fixed background view of an indoor gymnasium) to extract the silhouette

of moving objects.

In our case of small blob-like objects with a constantly moving background, we

choose to initialize objects manually. If we have a reliable object recognition system,

then it is still possible to have the automatic initialization. However, it is not an easy

task to recognize small blob-like hockey players on the rink without distinguishing

specific object features such as the number, logo, or their face. Object recognition is

beyond the scope of this thesis and therefore considered to be a future development.

Since our experiments show that the selection of a tightly bounding box on the targets

is necessary for the successful tracking performance, manual initialization is at present

the most appropriate method for the tracking of hockey players without implementing

object recognition.

4.3 Sequential Monte Carlo tracking

Sequential Monte Carlo methods have become popular and already been applied to

numerous problems in time series analysis [4], econometrics [18], and object track-

ing [18, 23, 25]. In non-Gaussian, hidden Markov (or state-space) models (HMM),

the state sequence{xt; t ∈ N},xt ∈ Rnx , is assumed to be an unobserved (hidden)

Markov process with initial distributionp(x0)1 and transition distributionp(xt|xt−1),

wherenx is the dimension of the state vector. The observations{yt; t ∈ N∗},yt ∈

Rny , are conditionally independent given the process{xt; t ∈ N} with marginal dis-

1we denotep(x0) asp(x0|x−1) for the notational convenience
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tributionp(yt|xt), whereny is the dimension of the observation vector. We denote the

state vectors and observation vectors up to timet by x0:t , {x0 . . .xt} and similarly

for y0:t. Given the model, we can obtain the sequence of filtering density to be tracked

by the recursive Bayesian estimation:

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)
(4.1)

wherep(yt|xt) is likelihood in terms of the observation model,p(xt|y0:t−1) is a prior

that propagates past state to future andp(yt|y0:t−1) is evidence. The Kalman filter

can handle Eq. (4.1) analytically if the model is based on the linear Gaussian state

space. However, in the case of visual tracking, the likelihood is non-linear and often

multi-modal with respect to the hidden states. As a result, the Kalman filter and its

approximation work poorly for our case.

With sequential Monte Carlo techniques, we can approximate the posterior

p(xt|y0:t) by a finite set ofM particles (or samples),{xi
t}i=1···M . In order to gener-

ate samples fromp(xt|y0:t), we propagate samples based on an appropriate proposal

transition functionf(xt|xt−1,yt). We setf(xt|xt−1,yt) = p(xt|xt−1), which is the

bootstrap filter [5]. We denote{xi
t}i=1···M as fair samples from the filtering distribu-

tion at time t, then the new particles, denoted byx̃i
t+1, have the following association

with the importance weights:

πi
t+1 ∝

p(yt+1|x̃i
t+1)p(x̃i

t+1|xi
t)

f(x̃i
t+1|xi

t,yt+1)
(4.2)

where
∑M

i=1 πi
t+1 = 1. We resample these particles with their corresponding im-

portance weights to generate a set of fair samples{xi
t+1}i=1···M from the posterior

p(xt|y0:t). With the discrete approximation ofp(xt|y0:t), the tracker output is ob-

tained by the Monte Carlo approximation of the expectation:

x̂t , E(xt|yt) (4.3)

whereE(xt|yt) = 1
M

∑M
i=1 xi

t. The following two sections will explain our state

dynamic model and the likelihood estimation by our adaptive multi-part color model.

59



The algorithm of our tracker is summarized in Algorithm 6.

4.4 State Dynamics

We formulate the state to describe a region of interest to be tracked. We assume that

the shape, size, and position of the region are knowna priori and define a rectangular

windowW . The shape of the region could also be an ellipse [2, 23] or any other appro-

priate shapes to be described, which depends mostly on what kind of object to track.

In our case, the objects are hockey players that are small, non-rigid, and deformable.

Therefore both a rectangle and ellipse are suitable. As in [2, 23, 25], the state consists

of the location and the scale of the windowW .

The state dynamics varies and depends on the type of motion to deal with.

Due to the constant, yet often random, nature of hockey players’ motion, we choose

the second-order auto-regressive dynamics to be the best approximating their motion

as in [25]. If we define the state at timet as a vectorxt = (l>t , l>t−1, st, st−1)>, where

> denotes the transpose,lt = (x, y)> is the position of the windowW at time t in

the image coordinate, andst is the scale ofW at timet. We apply the following state

dynamics:

xt+1 = Axt + Bxt−1 + Cvt,vt ∼ N (0,Σ). (4.4)

MatricesA,B, C andΣ control the effect of the dynamics. As it is mentioned in [25],

those matrices could be learned based on the perfect tracking result obtained in some

way. However, we do not cover this issue since it is beyond the scope of this thesis.

In our experiments, we define those matrices in ad-hoc way by assuming the constant

velocity on hockey players’ motion.

4.5 Multi-part Color Adaptation Model

This section explains how we incorporate the global nature of color in visual perception

into our sequential Monte Carlo framework. We follow the implementation of HSV

color histograms used in [25], and extend it to our adaptive color model.
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4.5.1 Color distribution Model

We use histograming techniques in the Hue-Saturation-Value (HSV) color space for

our color model. Since HSV decouples the intensity (i.e., Value) from color (i.e., Hue

and Saturation), it becomes reasonably insensitive to illumination effects. An HSV

histogram is composed ofN = NhNs +Nv bins and we denotebt(k) ∈ {1, . . . N} as

the bin index associated with the color vectoryt(k) at a pixel locationk at timet. As

it is pointed out in [25] that the pixels with low saturation and value are not useful to

be included in HSV histogram, we populate the HSV histogram without those pixels

with low saturation and value. Figure4.1shows two instances of the color histogram.

If we define the candidate region in which we formulate the HSV histogram as

R(xt) , lt + stW , then a kernel density estimateQ(xt) , {q(n;xt)}n=1,...,N of the

color distribution at timet is given by [2, 25]:

q(n;xt) = η
∑

k∈R(xt)

δ[bt(k)− n] (4.5)

whereδ is the Kronecker delta function,η is a normalizing constant which ensures∑N
n=1 q(n;xt) = 1, and a locationk could be any pixel location withinR(xt). Eq.

(4.5) definesq(n;xt) as a probability of a color binn at timet.

If we denoteQ∗ = {q∗(n;x0)}n=1,...,N as the reference color model andQ(xt) as a

candidate color model, then we need to measure the data likelihood (i.e., similarity)

betweenQ∗ andQ(xt). As in [2, 23, 25], we apply the Bhattacharyya similarity

coefficient to define a distanceξ on HSV histograms and its formulation given by [2]:

ξ[Q∗,Q(xt)] =

[
1−

N∑
n=1

√
q∗(n;x0)q(n;xt)

] 1
2

(4.6)

Statistical properties of near optimality and scale invariance presented in [2] ensure

that the Bhattacharyya coefficient is an appropriate choice of measuring similarity of

color histograms. Once we obtain a distanceξ on the HSV color histograms, we use
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(a) Color histogram of two different players

(b) Close-up of the player on left (c) Close-up of the player on right

(d) Color histogram of the player on left (e) Color histogram of the player on right

Figure 4.1:Color histograms

This figure shows two color histograms, each of which is from a different region of the
image. The player on left has uniform whose color is the combination of dark blue and
white and the player on right has red uniform. One can clearly see concentrations of
color bins due to limited number of colors. In (d) and (e), we set the number of bins,
N = 110, whereNh, Ns, andNv are set to 10.
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the following likelihood distribution given by [25]:

p(yt|xt) ∝ e−λξ2[Q∗,Q(xt)] (4.7)

whereλ = 20. λ is determined based on our experiments. Also, we set the size of bins

Nh, Ns, andNv as 10.

4.5.2 Multi-part Color Likelihood Model

The HSV color histogram is a reliable approximation of the color density on the

tracked region. However, a better approximation could be achieved if we consider the

spatial layout of the color because histograms ignore that. If we define the tracked re-

gion as the sum ofr sub-regionsR(xt) =
∑r

j=1 Rj(xt), then we apply the likelihood

as the sum of the reference histograms{q∗j }j=1,...,r associated with each sum-region

by [25]:

p(yt|xt) ∝ e
Pr

j=1 −λξ2[Q∗
j ,Qj(xt)] (4.8)

Eq. (4.8) shows how the spatial layout of the color is incorporated into the data likeli-

hood. In Figure4.2, we divide up the tracked regions into two sub-regions in order to

use spatial information of the color in the appearance of a hockey player.

Figure 4.2:Multi-part color likelihood model

This figure shows our multi-part color likelihood model. We divide our model into
two sub-regions and take a color histogram from each sub-region so that we take into
account the spatial layout of colors of two sub-regions.

The effect of using the multi-part color likelihood model depends on the type

of objects. For instance, if tracking targets have only a single color on their appearance,

then the spatial layout of color does not help. As for hockey players, their uniforms
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usually have a different color on their jacket and their pants and the spatial relationship

of different colors becomes important to be considered. In fact, Figure4.3 shows

the benefit of using the multi-part color likelihood model. All results presented in

this figure already use the model adaptation mechanism explained in the proceeding

section. At this point, the objective is solely to show the benefit of the multi-part color

model and thus the adaptation mechanism does not affect the content of the result. The

result obtained by tracking a rectangular area without considering the spatial layout of

the color information demonstrates that the tracking box tends to drift off the target

and eventually loses the target when the target makes a sudden turn to left. On the

other hand, the result with the multi-part color likelihood model shows not only that

the box does not drift off the target but also that the tracker never loses the target. It is

now evident that the multi-part color model increases the robustness of our color-based

tracker.

In our experiments, we also consider using more than two subregions to track

hockey players since three regions capture more precise spatial information of colors

within the bounding box. However, our experiments show that using more than two

subregions does not improve the tracking results on hockey players. Firstly, since the

most of hockey players wear a different color jersey for the upper body and lower body,

two subregions are enough to capture the spacial information of the dominant colors of

their jersey. Secondly, using more than two subregions decreases the effective particle

size and increases complexity of the likelihood distribution. Therefore, more particles

are required for estimating the likelihood, which makes it more difficult to realize the

real-time computation. With a reasonably small number of particles for the real-time

computation, we decide to use the two-part color model for tracking hockey players.

4.5.3 Adaptation

Tracking dynamic objects requires the model of the object to be adaptable since they

are constantly moving and change their shape. In [25], the reference color histogram

is fixed to beQ∗ initialized at the beginning of the sequence. The fixed reference

model, however, becomes unreliable when the target undergoes a drastic change in the

shape or color. Therefore, we extend our reference color histogramQ∗
t at timet to be
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Frame 1 Frame 1

Frame 72 Frame 72

Frame 227 Frame 227

Frame 436 (single part color model) Frame 436 (multi-part color model)

Figure 4.3:Tracking result with and without multi-part color likelihood model
The images in the right column are the correct result, which the tracker never loses the
target. On the other hand, the results with single part color model show that the tracker
loses the target at Frame 436.
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adaptable by combining the initial reference color histogramQ∗
0 and the most recent

color histogramQ∗
t−1 estimated at timet− 1. We define the following association:

Q∗
t = αQ∗

0 + (1− α)Q∗
t−1 (4.9)

whereα is a constant that weights how much information ofQ∗
0 andQ∗

t−1 should be

included in the most recent reference histogramQ∗
t . We setα = 0.7, which is deter-

mined by the trial-and-error method in our experiments. The value ofα is sensitive

to the performance of our tracker especially in cluttered scenes or fast moving scenes.

The tracker tends to lose the target in cluttered scenes ifα = 0.6 or 0.8. We conclude

that there is no universally correct value ofα that works in any situation.

While the model is updated and adapted overtime, the value ofα is also up-

dated based on the variance of the importance weights for all particles. Especially,

when the variance of importance weights is increased to be too large, it indicates that

the importance weights of the particles are all close to be a particular value and par-

ticles are distributed over a confusing area where there are many possible matches.

Under such a circumstance, we increase the value ofα to be 1. That is, we use only

the original reference color model with no adaptation to avoid adapting our model

with a false information. The threshold for the variance of importance weights is de-

termined to be 0.004 from our experiments. This adaptation scheme is quite simple

and yet makes our tracker better or at least as good as the one with the fixed reference

model. We are currently investigating more on a better adaptive mechanism to deter-

mine the value ofα based on the variance of importance weights. Our results show the

benefit of the adaptation in Figure4.4.

4.6 Robustness

This section demonstrates the robustness of our color-based tracking method. For all

the result presented in this section, we use 200 particles with the model adaptation.

As for the computational cost, our non-optimized implementation inC++ allows the

tracking of the region with the size of20× 20 pixels at a sample rate of 30 frames per

second on a PCs workstation with 2.66 GHz Pentium 4 CPU, 1GB RAM.
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Frame 1 (original model) Frame 1 (original model)

Frame 450 Frame 450

Frame 474 Frame 474
no adaptation with adaptation

Figure 4.4:Tracking result with and without adaptation

The images in the left column are the result of tracking a single hockey player without
our adaptation mechanism. The images in the right column are the result with the
adaptation. As it is shown, the tracker with no adaptation loses the object when the
target undergoes a drastic change of its appearance and a similar object is closeby.
Apparently, on Frame 474, the box drifted off to a player in the same team whose
appearance more closely resembles the original model of the target.
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Algorithm

Given the initial reference color modelQ∗
0, track the windowW .

(1) Initialization:
− Sett = 0.
− If t > 0, then update the reference color modelQ∗

t by Eq. (4.9).
− For i = 1, . . . ,M , samplexi

t ∼ p(x0).

(2) Propagation of particles:
− For i = 1, . . . ,M , propagatexi

t by second-order AR dynamics in Eq. (4.4).

(3) Importance sampling:
− For i = 1, . . . ,M , compute a candidate histogramQ∗

it by Eq. (4.5) and
compute the importance weights

πi
t = κ e

PN
n=1 λ

√
q∗(n;xt)qi(n;xt)

whereκ ensures
∑M

i=1 πi
t = 1.

(4) Selection:
− If the effective particle sizeS = (

∑M
i=1 πi

t)
−1 < M

2 , then resampleM par-
ticles from the set{x̃i

t}i=1,...,M which is generated according to the importance
weights
− Estimatêxt according to Eq. (4.3).
− Sett = t + 1 and go to(1).

Algorithm 6: Color-based sequential Monte Carlo tracker
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4.6.1 Illumination change

Figure4.5 shows illumination insensitive performance of our tracker which does not

lose the target even if there is a drastic illumination change due to camera flashes. The

same figure also shows that the second-order AR dynamics makes our tracker robust

in a scene even when targets make a sudden direction change. Furthermore, when the

object moves by a small amount, the dynamics tends to fail to approximate the target’s

velocity and our tracker may not locate the object exactly (i.e., the bounding box tends

to drift off by a little amount).

4.6.2 Cluttered scene

Figure4.6 shows the successful performance of our tracker in a cluttered scene with

similar objects nearby. It is evident that particles spread over the region which covers

two similar objects, which makes it extremely hard for the tracker to locate the true

target. However, the dynamics of the object and importance sampling successfully

locate the majority of particles on the matched region and helps our tracker to locate

the true target. Our extensive experiments also reveal the limitation of a single object

color-based tracking method. Our tracker fails when there are identical objects such

as players in the same team nearby the target, for the tracker does not know the asso-

ciation between two identical objects without anyprior information. This is one open

problem that we need to deal with in the future. Although Section4.7 introduces the

extended version of our tracker for multiple object tracking, the problem is still not

solved.

4.7 Result

This section presents the tracking results by our tracker for both a single and multiple

objects and the trajectories of these players by combining the tracking results obtained

by our tracker and transformations computed by our rectification system. For a single

object tracking, our tracker tracks a target for 500 frames. Figure4.7shows the result.
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(a) Frame 186 (b) Frame 186

(a) Frame 208 (b) Frame 208

(b) Frame 220 (c) Frame 220

Figure 4.5:Tracking results under a severe illumination change

This figure shows the robustness of our tracker under a severe illumination change with
a similar object closeby. The images in the right column show particles. On Frame
208, a camera flash makes a drastic intensity change on the image. Also the bounding
box is drifting off due to a sudden direction change of the player. However, the tracker
does not lose the target.
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(a) Frame 410 (b) Frame 410

(a) Frame 433 (b) Frame 433

(b) Frame 468 (c) Frame 468

(b) Frame 500 (c) Frame 500

Figure 4.6:Tracking results with a cluttered scene with similar objects

This figure shows the robustness of our tracker in a cluttered scene with similar objects
closeby. The enlarged images in the right column show 10 out of 200 particles to show
how spread the particles are.
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During a sequence of 500 frames, regardless of cluttered scenes and partial occlusions,

the tracker never loses the target. We present every 100th frame to show the accuracy

of our tracker. We consider the bottom of the bounding box as the real world position

of the player on the rink. Therefore, the estimated positions of the object might be

slightly off by from 30 cm to 1 m from the real world positions of the object. However,

the gap is small enough to be ignored for displaying the trajectory of the object. For

the multiple object tracking, we simply implement a separate color-based sequential

Monte Carlo tracker for each individual object. Figure4.8 shows the tracking results

for three hockey players. The sequence is 250 frames long. Since our tracker does not

deal with disappearance and reappearance of the object in the scenes, among our data,

250 frames are selected to be the longest sequence for which three players are always

at present in the scene. As is shown in the figure, our tracker successfully tracks three

small objects even in cluttered scenes. As for the computational cost of our tracker

for both the single and multiple objects, our non-optimized implementation inC++

allows the tracking of the region with the size of20× 20 pixels at a rate of 30 frames

per second on a PCs workstation with 2.66 GHz Pentium 4 CPU, 1GB RAM.

4.8 Conclusion

In this chapter, we use color-based sequential Monte Carlo tracking to track hockey

players. We show that our adaptive color model improves the performance of the track-

ing method proposed in [25]. We also demonstrate several advantages for tracking a

non-rigid object as our probabilistic approach is robust to partial occlusion, invariant to

scale and illumination change, and efficient in computation time. The results presented

in this chapter show the successful integration of our rectification system and tracking

system. There are, however, many issues still remaining to be dealt with for better

performance of the system. The next chapter summarizes our thesis and show several

directions and extensions to be considered for future development of our automatic

hockey annotation system.
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Frame 1 Frame 100 Frame 200

Frame 300 Frame 400 Frame 494

100

200

400

300

1

494

Figure 4.7:Trajectory of a player being tracked

This figure shows the tracking result on a single object and its trajectory. Our tracker
successfully tracks the target for 494 frames. Our tracker works properly when the
target is partially occluded or is cluttered with similar objects such as players from the
same team.The trajectory is computed automatically based on transformations com-
puted by our rectification system and the tracking result. We use arrows to direct
where the object is on the trajectory in that particular frame. We also put hand drawn
trajectory in each frame to give an idea how the object is moving around.
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Figure 4.8:Trajectories of three players being tracked

This figure shows the tracking result on multiple objects and their trajectories. Our
tracker successfully tracks three targets for 250 frames. The trajectory is computed
automatically based on transformations computed by our rectification system and the
tracking result. Unlike Figure4.7, we do not use arrows or hand drawn trajectories of
objects in the image for the clarity of the presentation. The numbers on the rink map
represents the number of the frame in which each object is located at that particular
location on a trajectory.
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Chapter 5

Summary and extensions

5.1 Summary

In this thesis, we have addressed the problem of developing a descriptive system that

analyzes what is happening in hockey scenes. Our contribution is twofold. Primarily,

we have developed a method that removes camera motions of a broadcast camera and

automatically computes the mapping between the original broadcast video sequence

and the globally consistent rink map. Secondly, we have demonstrated excellent track-

ing results of hockey players that are all small blob-like, non-rigid, deformable, and

low resolution objects.

A variety of vision problems make these contributions quite difficult. Due to

a limited access only to the video that was taken with a panning, tilting, and zooming

broadcast camera, we need to remove camera motions and create the globally consis-

tent map to display trajectories of hockey players. Solving parameters of a broadcast

camera in hockey has been quite challenging since camera motions are fast and non-

smooth in order to capture highly complex and fast-moving dynamic scenes of hockey.

Tracking hockey players is also difficult because they are quite fast, small, non-rigid,

and deformable.

As we have overcome most of these vision problems and a literature survey

has shown that there have not been any automatic hockey annotation systems in the

past, we now hope that our efforts and accomplishments in this work would become

a milestone for research in automatic video annotation in hockey. The methods pre-
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sented here perform quite well on the test data and establish the infrastructure of our

automatic video annotation system in hockey. In future work, we will improve our

tracking algorithm for even more complex scenes with multiple player interactions

and speed up the process of our system for real-time analysis of hockey scenes.

5.2 Future directions

For the successful progression toward our automatic video annotation system in future,

we suggest several issues remained to be dealt with and possible improvements on our

current system.

The major issue for our rectification system is an improvement on the registra-

tion accuracy. We suggest two ways for the further improvement. First, we develop

an interactive user interface to correct projection errors accumulated over time from

the automatic computation of frame-to-frame homographies. A better mechanism for

detecting error accumulation is necessary for real-time interactions. Second, we im-

prove our model fitting algorithm by making it more robust to large projection errors.

Currently we are investigating a better edge search technique to improve our model

fitting mechanism.

As for tracking hockey players, there are still many issues to be considered.

First of all, we plan to automate the initialization of objects being tracked by com-

puting frame-difference measurements [36]. The key for the initialization is to have

a fixed background model to distinguish it from foreground objects. Therefore, the

initialization should be done on the globally consistent map where the background is

fixed. Secondly, we need to develop a method to detect objects that disappear and

reappear in the scenes. Due to a limited field of view of a broadcast camera, players

are constantly moving into or out of the scenes. There are some successful imple-

mentations for detecting objects that enter or disappear from the scenes with a fixed

background by [36, 25, 23]. Their methods are most likely to fail in environments with

a dynamic background. Thirdly, we plan to implement an unscented particle filter for

better proposal distributions [28, 19] in order to place particles efficiently in the high

likelihood area and realize a better tracking performance. Lastly, we need to extend
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our sequential Monte Carlo tracker with multiple targets in the most complex scenes.

Instead of using a separate tracker for each target, we plan to use only one tracker that

could associate a given measurement to a target model automatically and estimate the

position of multiple targets simultaneously.

Although our system is still open for many directions and improvements, it is

now capable of providing visual input for a system that performs automatic video an-

notation of dynamic scenes. Since the methods presented in this work are applicable to

video annotation in other domains of sports, surveillance, or many other situations that

require object tracking on a planar surface, we hope to test our system in a different

domain. We also hope that this thesis may become a foundation for automatic video

annotation in hockey.

77



Bibliography

[1] S. Birchfield.Depth and motion discontinuities. PhD thesis, Stanford University,

1999. 18, 24, 28

[2] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects

using mean shift. InIEEE Conf. on Computer Vision and Pattern, pages 142–151,

2000. 16, 57, 60, 61

[3] M. Y. D. Yow, Boon-Lock Yeo and B. Liu. Analysis and presentation of soccer

highlights from digital video. InACVPR95, Singapore, 1995.2, 11, 58

[4] A. Doucet. On sequential monte carlo sampling methods for bayesian filtering,

1998. 15, 58

[5] A. Doucet, N. de Freitas, and N. Gordon.Sequential Monte Carlo Methods in

Practice. Springer-Verlag New York, Inc., 2001.59

[6] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, June 1981.18

[7] Y. Gong, L. T. Sin, C. H. Chuan, H. Zhang, and M. Sakauchi. Automatic parsing

of TV soccer programs. InInternational Conference on Multimedia Computing

and Systems. IEEE Computer Society, May 1995.2, 12

[8] R. Hartley. In defense of the eight-point algorithm.PAMI, 19(6):580–593, June

1997. 24

[9] R. Hartley and A. Zisserman.Multiple view geometry in computer vision. Cam-

bridge University Press, June 2000.18, 19, 21, 23, 24, 25, 40, 41

78



[10] U. H. Inc. The official rules of ice hockey, 2001.44, 47

[11] S. Intille and A. Bobick. Visual tracking using closed-worlds. MIT Media Lab

Perceptual Computing Technical Report 294, Massachusetts Institute of Tech-

nology, 20 Ames St. Cambridge, MA 02139, Nov. 1994.2, 7, 13, 14, 17, 44,

57

[12] S. Intille, J. Davis, and A. Bobick. Real-time closed-world tracking. InInterna-

tional Conference on Computer Vision and Pattern Recognition, pages 697–703,

Puerto Rico, June 1997. IEEE Computer Society Press.14, 58

[13] M. Isard and A. Blake. The CONDENSATION algorithm — conditional density

propagation and applications to visual tracking. In M. C. Mozer, M. I. Jordan,

and T. Petsche, editors,Advances in Neural Information Processing Systems, vol-

ume 9, pages 361–? The MIT Press, 1997.15

[14] A. Jacquin and A. Eleftheriadis. Automatic location tracking of faces and facial

features in video sequences, 1995.14

[15] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust online appearance models

for visual tracking. In2001 Conference On Computer Vision and Pattern Recog-

nition, volume Vol.I, pages 415–422, Kauai, 2001. IEEE Computer Society.14,

16

[16] K. Kanatani and N. Ohta. Accuracy bounds and optimal computation of homog-

raphy for image mosaicing applications. InProceedings of the 7th IEEE Interna-

tional Conference on Computer Vision (ICCV-99), volume I, pages 73–79, Los

Alamitos, CA, Sept. 20–27 1999. IEEE.18

[17] H. Kim and K. Hong. Soccer video mosaicing using Self-Calibration and line

tracking. InICPR01 VOL I, pages 592–595. IEEE, 2000.2, 14

[18] J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems.

Journal of the American Statistical Association, 93(443):1032–1044, 1998.15,

58

79



[19] R. Merwe, A. Doucet, N. Freitas, and E. Wan. The unscented particle filter.

Techinical report cued/f-infeng/tr 380, Cambridge University Engineering De-

partment, 20 Ames St. Cambridge, MA 02139, 2000.15, 76

[20] T. Misu, M. Naemura, W. Zheng, Y. Izumi, and K. Fukui. Robust tracking of

soccer players based on data fusion. In16th International Conference on Pattern

Recognition, volume vol.1, pages 556–561. IEEE, 2002.14, 57

[21] C. J. Needham and R. D. Boyle. Tracking multiple sport players through occlu-

sion, congestion and scale. InBritish Machine Vision Conference, pages 1:93–

102, 2000. 58

[22] C. J. Needham and R. D. Boyle. Tracking multiple sports players through occlu-

sion, congestion and scale. InBritish Machine Vision Conference, volume vol.I,

pages 93–102. BMVA, 2001.14

[23] K. Nummiaro, E. Koller-Meier, and L. V. Gool. A color-based particle filter.

In A. Pece, editor,First International Workshop on Generative-Model-Based Vi-

sion, volume 2002/01, pages 53–60. Datalogistik Institut, Kobenhavns Univer-

sitet, 2002. 15, 16, 17, 58, 60, 61, 76

[24] V. Pavlovic, J. M. Rehg, T.-J. Cham, and K. P. Murphy. A dynamic bayesian

network approach to figure tracking using learned dynamic models. InProceed-

ings of IEEE international Conference On Computer Vision (ICCV 99), pages

94–101, Corfu, Greece, 1999. IEEE Computer Society.14, 16
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