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ABSTRACT
Recent advances in tumor immunology have fostered

the clinical implementation of different immunotherapy mo-
dalities. However, the alternate success of such regimens
underscores the fact that the molecular mechanisms under-
lying tumor immune rejection are still poorly understood.
Given the complexity of the immune system network and the
multidimensionality of tumor–host interactions, the com-
prehension of tumor immunology might greatly benefit from
high-throughput DNA array analysis, which can portray the
molecular kinetics of immune response on a genome-wide
scale, thus accelerating the accumulation of knowledge and
ultimately catalyzing the development of new hypotheses in
cell biology. Although in its infancy, the implementation of
DNA array technology in tumor immunology studies has
already provided investigators with novel data and intrigu-
ing hypotheses on the cascade of molecular events leading to
an effective immune response against cancer. Although the
principles of DNA array-based gene profiling techniques
have become common knowledge, the need for mastering
this technique to produce meaningful data and correctly
interpret this enormous output of information is critical and
represents a tremendous challenge for investigators. In the
present work, we summarize the main technical features and
critical issues characterizing this powerful laboratory tool
and review its applications in the fascinating field of cancer
immunogenomics.

TUMOR IMMUNOLOGY IN THE POST-
GENOMIC ERA

Recent years have witnessed important breakthroughs in
the understanding of tumor immunology (1). In particular, the
identification of the genes encoding tumor-associated antigens
(TAAs) and the development of therapies for immunizing
against these antigens have opened new avenues for the devel-
opment of an effective anticancer immunotherapy (2). Never-
theless, although the regression of established cancer has been
obtained in humans by a variety of immunotherapeutic strate-

gies (3–7), cancer immunotherapy appears to have reached a
plateau of results. To further explore the anticancer potential of
the immune system, a better understanding of the finely orches-
trated molecular mechanisms governing tumor–host interac-
tions is very much needed. Only when the molecular matrix
governing immune responsiveness of cancer is deciphered, will
new therapeutic strategies be designed to fit biologically defined
mechanisms of cancer immune rejection.

Traditional molecular analyses are “reductionist” be-
cause they assess the expression of only one or a few genes
at a time. Thus, the output of single-gene analysis is hardly
applicable to biological models whose outcome is likely to be
governed by the combined influence of a global gene network
(8). The development of other molecular methods, such as
comparative genomic hybridization (CGH; Ref. 9), differen-
tial display (10), serial analysis of gene expression (SAGE;
Ref. 11), and DNA arrays (12), together with the sequencing
of the human genome, has provided an opportunity to mon-
itor and investigate the complex cascade of molecular events
that regulate tumor-host interactions. The availability of such
large amounts of information has shifted the attention of
scientists from a hypothesis-driven approach to biological
phenomena (the analysis of one event at a time) to a “non-
reductionist” approach, in which thousands of observations
are recorded at once (13). In particular, the novelty of func-
tional genomics lies in the double opportunity to give a
holistic genetic basis to hypothesis-driven approaches as well
as to make unbiased observations first and then generate new,
unanticipated hypotheses from those observations. Global
gene-expression analysis should be of great use in the field of
immunology, because it has been shown clearly that the study
of a single immunological parameter at one time is not
sufficient to generate a general view of how the immune
system fights a given pathogen or tumor, maintains self-
tolerance, or “memorizes” past encounters with antigens.
High-throughput technologies can be used to follow changing
patterns of gene expression over time. Among them, DNA
arrays have become prominent because they are easier to use,
do not require large-scale DNA sequencing, and allow the
parallel quantification of thousands of genes across multiple
samples. Although this technology provides no information
on the biologically active products of genes (i.e., proteins),
functional genomics studies have demonstrated a tight cor-
relation between the function of a protein and the expression
patterns of its gene (12), which represents the rational for a
gene profile-based formulation of scientific hypotheses.
Once a gene or (more frequently) a set of genes have been
identified in a DNA array-based experiment, investigators
commonly confirmed the results with more accurate low-
throughput techniques, such as quantitative real-time PCR
(14). To further validate gene profiling data, the expression
of proteins coded by the genes of interest is generally as-
sessed by standard immunohistochemistry or Western Blot
techniques. Because translational gene expression regulation
and posttranslational protein modifications are also of crucial
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importance in determining cell functions, DNA array tech-
nology should be complemented with other recently devel-
oped high-throughput assays, such as tissue microarray (15)
and proteomics (16). Hopefully, by integrating these power-
ful analytic tools, investigators will be able to comprehen-
sively describe the molecular portrait of the biological phe-
nomena underlying tumor development and progression.

DNA ARRAY TECHNOLOGY
High-throughput DNA array technology allows for the

simultaneous measurement of the expression level of thou-
sands of genes in a single experiment. Each array consists of
a solid support (usually nylon or glass) on which cDNA or
oligonucleotides (i.e., target) are arrayed in an addressable
and miniaturized configuration, which minimizes the require-
ment of source material. Fluorescent, chemiluminescent, or
radioactive labeled genetic material (i.e., probe) derived from
cell lysate mRNA is hybridized to the target on the array. The
fluorescent, chemiluminescent, or radioactive emissions of
specifically bound probes are detected using an appropriate
scanner that provides a quantitative estimate of each gene
expression.

Two main implementations of DNA arrays have been

applied with success. The first uses arrays of cDNA clones
robotically spotted on a solid surface in the form of PCR
products. Several versions exist, depending on the type of sup-
port (nylon, glass) and the type of target labeling (radioactivity,
chemiluminescence, fluorescence; Ref. 17). This approach is
flexible, allowing researchers to make arrays with their own
gene sets, but it requires accurate annotation, collection, and
storage of cDNA clones and PCR products, as well as avoidance
of cross-contamination.

The second technological platform (Fig. 1) uses arrays of
oligonucleotides either directly synthesized in situ on a support
(18, 19) or robotically spotted (20). In this case, targets design
requires knowledge of gene sequences. Oligonucleotide length,
which varies from 20 to 80 bp, allows for alternative transcripts
not distinguishable with full-length cDNA arrays. The main
drawback remains the elevated cost.

The final step of a DNA array-based assay is the conver-
sion of the image acquired with the scanner into a numeric table
that associates multiple values to every gene (or oligonucleotide
set) in the array. This is achieved with analysis packages that
automatically recognize the position of each spot in the image
and convert the distribution of pixel intensities into mean/
median signal intensity.

Fig. 1 Oligonucleotide arrays for expression monitoring are based on sequence information alone, without the need for physical intermediates such
as clones, PCR products, or cDNA. The key point for their use is the targeted design of sets of probes to specifically monitor the expression levels
of thousands of genes. Using as little as 200 to 300 bases of gene, cDNA or expressed sequence tag (EST) sequence, independent 25-mer
oligonucleotides are selected to serve as sensitive, unique, sequence-specific detectors. The arrays are designed in silico, and as a result, it is not
necessary to prepare, verify, quantitate, and catalog a large number of cDNAs, PCR products, and clones; and there is no risk of a misidentified tube,
clone, cDNA, or spot. Crucial for this approach is the use of target redundancy, which is not meant as the deposition of the same piece of DNA in
multiple locations on an array, but rather the use of multiple oligonucleotides (oligo) of different sequence designed to hybridize to different regions
of the same RNA. The use of multiple independent detectors for the same molecule greatly improves signal-to-noise ratios, improves the accuracy
of RNA quantitation, reduces the effects of cross-hybridization, and drastically decreases the rate of false positives. An additional level of redundancy
comes from the use of mismatch (MM) control probes that are identical to their perfect match (PM) partners, except for a single base difference in
a central position (arrow). The MM probes act as specificity controls that allow the direct subtraction of both background and cross-hybridization
signals and that allow discrimination between “real” signals and those due to nonspecific or semispecific hybridization, which are more likely to occur
with single-spot strategy DNA arrays (e.g., cDNA array platform). In the presence of even low concentrations of RNA, hybridization to the PM-MM
pairs produces recognizable and quantitative fluorescent patterns. The strength of these patterns, directly relates to the concentration of the RNA
molecules in the complex sample (even without a competitive hybridization or two-color comparison).
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DATA ANALYSIS
The analysis, interpretation, and meaningful display and

storage of the large volume of data generated by DNA array
experiments are particularly challenging. When looking at gene
expression changes between samples, no consensus exists as to
the best approach to testing statistically significant difference.
The Student t test with the Bonferroni correction is generally
perceived as too stringent given the low number of replicates in
most microarray experiments. Alternative techniques may be
more appropriate, including parametric and nonparametric
ANOVA and permutation-based significance analysis of mi-
croarrays (SAM). If the experiment is aimed at describing a
molecular phenotype, the more conservative SAM may reduce
the chance of type I error. For hypothesis-generating experi-
ments, parametric ANOVA will most likely generate a larger,
less stringent data set that can be subjected to independent
experimental validation.

The true strength of high-throughput experiments in reveal-
ing the complexity of tumor–host relation derives from the
mathematical identification of similar expression patterns
(called “signatures”) within profiling data. Dedicated software
developed for this task includes the “unsupervised” and “super-
vised” varieties (21, 22). Unsupervised methods [e.g., cluster
analysis (23), self-organizing map (SOM; Ref. 24), and princi-
pal component analysis (PCA; Ref. 25)] define classes without
any a priori intervention on data, which are organized by
clustering genes and/or samples simply according to similarities

in their expression profiles. Among investigators, cluster anal-
ysis is probably the most popular method of DNA array data
analysis (23, 26–30). Depending on the way in which the data
are clustered, one can distinguish between hierarchical and
nonhierarchical clustering (23, 31, 32). Hierarchical clustering
allows for the detection of higher-order relationships between
clusters of profiles (Fig. 2), whereas the majority of nonhierar-
chical classification techniques work by allocating gene expres-
sion profiles to a predefined number of clusters. The possibility
of exploring different levels of the hierarchy has led many
authors to prefer hierarchical clustering to the nonhierarchical
alternatives.

The resulting sample classification provided by unsuper-
vised methods often correlates with a general characteristic of
the sample, as defined by large sets of genes, but not necessarily
with the particular feature of interest, generally identified by a
smaller set of genes. By defining relevant classes before anal-
ysis, supervised techniques [e.g., support vector machines (33),
weighted votes (34), and supervised neural networks (35)] by-
pass this issue. These algorithms incorporate external informa-
tion related to samples studied to identify the optimal set of
genes that best discriminate between experimental samples.

TECHNICAL ISSUES
Cell Source. Ex vivo experiments based on the analysis

of tumor biopsies or patient peripheral blood mononuclear cells
(PBMCs) are restrained by the difficulty of determining the cell

Fig. 2 Hierarchical aggregative clustering. The
color codes, the measured fluorescence ratios:
black, genes with unchanged expression levels;
increasingly intense red, genes with increasingly
positive expression; increasingly intense green,
genes with increasingly negative expression. Ac-
cordingly, the darker the color, the closer to un-
changed expression. The figure shows an example
with the color-coded expression values of five
genes (gene 1–5) in five different experimental
conditions (C1, C2, C3, C4, C5). In the aggregative
method, the closest pair of profiles is chosen based
on a given metric. Then, an average of both pro-
files is constructed. This defines a relationship of
closeness between both profiles that remain tied
by the corresponding branch of the tree. Thus, the
linked profiles are substituted by the average
profile, and the process continues until all of the
profiles are linked. The linkage relationship
defines the hierarchy of the tree. Asterisks link
corresponding rows of genes during the clustering
process.

4599Clinical Cancer Research



source of genes over/underexpressed after cell lysis (for RNA
extraction) of heterogeneous samples (Fig. 3). In fact, PBMC
and solid tumor specimens contain several cell types (leukocyte
subpopulations, normal/malignant cells) in different proportions
and functional status. An expression profile from such samples
represents a snapshot of the genes expressed by all cell types
present in the specimen at that moment. A solution may come
from confronting, with clustering techniques, expression pro-
files of heterogeneous specimens with those of cell lines that
represent the cell types present in the sample (virtual microdis-
section; Refs. 27 and 29). A more accurate but also more
difficult and labor-intensive strategy lies in the use of tissue

microdissection, which allows the procurement of pure/near-
pure cell subpopulations from frozen- or fixed-tissue specimens
(36, 37).

RNA Abundance. DNA array experiments require large
amounts of high-quality RNA. Fine-needle aspirate material
(38) and many clinical specimens from early diagnoses and new
minimally invasive diagnostic procedures (e.g., sentinel node
biopsy for melanoma or breast cancer) can provide critical ex
vivo biological information using high-content screen technol-
ogy but are limited by the amount of material obtained (Fig. 3).
Most DNA array platforms work with a few micrograms (3–5
�g) of mRNA except for nylon membranes with radioactive

Fig. 3 Global view of potential strategies
and objectives of DNA array-based ex vivo
studies. PBMC, peripheral blood mononu-
clear cell; TAA, tumor-associated antigen.
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detection, which only use a few nanograms (17). One solution
for scarce RNA source is to amplify the sample mRNA using
linear amplification methods that maintain proportional the ex-
pression of genes (39, 40). Despite the common use of these
amplification procedures, not much systematic assessment of
their limits and biases has been documented. We devised a
procedure that optimizes amplification of low-abundance RNA
samples by combining RNA amplification with a template-
switching effect (41). The fidelity of RNA amplified from
1:10,000 to 1:100,000 of commonly used input RNA was val-
idated by downstream real-time quantitative PCR (14) and re-
sulted comparable with expression profiles observed with con-
ventional polyadenylic acid RNA or total RNA-based arrays.
Furthermore, the quality of the array data was superior to that
obtained using total RNA, suggesting that routine mRNA am-
plification could be recommended for all cDNA microarray-
based analysis of gene expression (42).

Technical Limitations. In addition to the limitations of
DNA array technology already mentioned in the previous para-
graphs, we would like to draw the reader’s attention on other
general issues that should be kept in mind while dealing with
this biotechnique. Gene expression profiling can define the
integrated response of a cell to the surrounding environment in
resting conditions or in response to stimulation. This portrait is
defined by the primary transcriptional reaction downstream of
signaling pathways, as an electroencephalogram may portray the
neurological response to light or sound stimulation. Accord-
ingly, functional genomics is more informative of what a given
cell is preparing to do rather what it is actually doing. Because
information derived from functional genomics studies is not
directly informative of the status quo, investigators should be
extremely cautious interpreting DNA array results, particularly
when single gene differences (as opposed to large gene sets) are
taken into consideration. although the interpretation can often be
inferred. Reproducibility is another critical issue. The correla-
tion observed between gene expression levels from duplicate
spots on a single array usually exceeds 95%. This is often
interpreted as a demonstration of reproducibility. However, if
the same sample is split and hybridized to two different arrays,
the correlation across hybridizations is likely to fall to the
60-to-80% range. Correlations between samples obtained from
individual inbred mice may be as low as 30%. If the experiments
are carried out in different laboratories, the correlations may be
even lower. These decreasing correlations reflect the cumulative
contributions of multiple sources of variation (43). The main
sources of variability are biological and technical variation. As
for the former, it is generally appropriate to take steps to vary
the conditions of the experiment, e.g., by assaying multiple
animals, to ensure that the effects that do achieve statistical
significance are real and will be reproducible in different
settings. The problem of technical variability should also be
addressed while designing DNA array-based experiments.
Although this can be achieved by repeating the experiment,
high-throughput DNA array experts suggest that the use of spot
replicates within the same array is the best way to deal with this
issue (44, 45). In particular, biostatistical analysis has shown
that a minimum of three replicates should be used to reduce the
number of false-positive and false-negative results generated by
studies performed without replication (46).

Finally, a highly challenging issue common to all high-
throughput technologies is the biological interpretation of the
results, which is limited by our lack of knowledge on the
relationships among signaling pathways, transcriptional regula-
tion, and metabolic stability of cells. To address this issue,
various software programs have been developed to connect
experimental results with available data bases or literature-based
information (47). These data bases can directly link individual
genes to other genes with known relationship and can help
construct biological hypotheses.

CANCER IMMUNOGENOMICS
Tumor Escape from Immune Surveillance. Despite the

evidence that immune effectors can play a significant role in
controlling tumor growth in natural conditions or in response to
therapeutic manipulation, it is evident that cancer cells can
survive their attack as the disease progresses. Several mecha-
nisms underlying immune escape have been proposed (48), such
as down-regulation of HLA molecules/TAA on tumor cell sur-
face, the production of immunosuppressive cytokines, and the
expression of lymphotoxic molecules (i.e., FAS ligand) by ma-
lignant cells (49). However, these mechanisms cannot be advo-
cated in many cases of immunotherapy failure (48) and some of
the existing hypotheses have been questioned (50).

Gene expression profiling led Toulouse et al. (51) to hy-
pothesize that a tumor suppressor gene [i.e., retinoic acid recep-
tor �2 (RAR�2)] exerts its anticancer activity through the
stimulation of the immune system. RAR�2, which is inactivated
in many epithelial tumors and their derived cell lines, has
frequently been shown to be the principal mediator of the tumor
suppressive effects of retinoic acid. Searching for genes regu-
lated by this receptor, the authors found that several of them
code for proteins favoring an effective antitumor immune re-
sponse, suggesting that down-regulation of these genes in
RAR�2-deficient tumor cells may contribute to immune system
evasion. In this paradigmatic experience, DNA array technology
allowed investigators to formulate and corroborate their hypoth-
esis by simultaneously screening several gene pathways poten-
tially influenced by a given gene.

Gene profiling of melanoma biopsies allowed us to observe
that the tumor microenvironment is naturally rich in expression
of immunomodulating molecules (e.g., cytokines, growth fac-
tors; Ref. 52). Because of their concomitant pro-inflammatory
properties, many of these factors might trigger a dormant host
immune system otherwise tolerant toward the poorly immuno-
genic malignant cells by enhancing TAA immunogenicity in
vivo (53). This interpretation fits well the “danger” model pos-
tulated by Matzinger (54), according to which, TAA recognition
by CTLs must be preceded by a nonspecific immunological
alarm (i.e., danger signal) for an effective immune response to
take place. When the level of immunostimulatory molecules
within the tumor microenvironment reaches the threshold re-
quired to induce an immune response, tumors spontaneously
regress, as observed with relatively high frequency in melanoma
and renal cancer patients. If, however, the level of immune or
inflammatory stimulation is below the threshold required for
immune rejection, the balance struck between the host immune
system and cancer enables their coexistence. In this case, sys-
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temic cytokine [(e.g., interleukin (IL)-2] administration and/or
TAA-specific immunization might shift the balance in favor of
the host by enhancing the ongoing immune/inflammatory re-
sponse, the result being tumor rejection (3).

New Targets for Anticancer Vaccines. DNA array
technology has been extensively used to identify gene patterns
specific for normal cells (e.g., lymphocyte subsets), as well as
pathological tissues (e.g., cancer; Refs. 55, 56). In particular,
investigators are using the gene fingerprint of cells not only to
differentiate between normal and pathological samples (diagno-
sis) but also to better define the phenotype of neoplasms (on-
cotranscriptome), which in turn might be particularly useful in
subclassifying tumor types according to their different clinical
outcomes (prognosis). A corollary of such research is the iden-
tification of novel TAAs suitable for cancer immunotherapy.
Classically, the identification of TAA-derived T-cell epitopes
requires patient-derived T cells and either a gene expression
approach (57) or a mass spectrometry-based sequencing of the
recognized peptides (58). More recently, “reverse immunology”
has been proposed as a novel approach to select HLA class
I-restricted epitopes from a given TAA (59). Main hurdles of
this strategy are the time-consuming culture techniques and,
more importantly, the low frequency of preexisting epitope-
specific T cells. Comparative expression profiling of a tumor
and the corresponding autologous normal tissue enabled by
DNA array technology (19, 60) is an excellent method for
identifying large numbers of candidate TAAs from individual
tumor samples (61–63). Using this strategy, Mathiassen et al.
(64) have found that several genes were overexpressed by
transplantable thymomas established from an inbred p53�/�
mouse strain. Mice were then immunized with mixtures of
peptides representing putative cytotoxic T-cell epitopes derived
from one of the gene products identified by DNA array analysis.
Interestingly, such immunized mice were protected against sub-
sequent tumor challenges, showing that this gene profile-based
strategy is suitable for the screening of new TAA-derived im-
munogenic peptides. Similar findings have been already re-
ported in humans (65). Therefore, it appears appealing to screen
the entire transcriptome of any given tumor to identify genes
encoding potential tumor specific antigens suitable for peptide-
based cancer vaccines. A potential development could be the
utilization of DNA array technology for designing patient-
tailored TAA-based vaccination. To this aim, Weinschenk et al.
(66) have recently proposed the integration of high-density
oligonucleotide array with mass spectrometry, quantitative real-
time PCR, and HLA-tetramer technology to identify patient-
specific candidate peptides suitable for anticancer vaccination.
After sorting out genes selectively expressed or overexpressed
in malignant tissues (e.g., renal cell carcinomas), these investi-
gators identified HLA class I-restricted peptides from tumor
specimens by mass spectrometry. Then, peripheral CD8� T
cells from tumor patients and healthy individuals were tested for
reactivity toward the candidate peptides using quantitative real-
time PCR (14) and HLA-tetramer-based flow cytometry (67),
thus allowing the investigators to identify TAA epitopes poten-
tially suitable for clinical implementation.

Dendritic Cell Biology and Cancer. Despite the strong
preclinical evidence supporting the use of dendritic cells (DCs)
for anticancer vaccination in humans, the results of clinical trials

thus far carried out do not appear to meet expectations (4,
68–72), probably because the physiology of these cells is only
partially understood. Immature DCs capture TAAs in the pe-
ripheral tissues, process them into peptides bound to HLA
molecules, and then migrate to lymphoid organs in which they
present HLA-peptide complexes to T lymphocytes. After the
interaction with TAA-specific T-helper lymphocytes, DCs be-
come activated through the CD40 signaling pathway, up-regu-
late HLA and costimulatory molecules expression on their sur-
face, and acquire a mature phenotype characterized by the
expression of new markers such as CD83 and by the secretion of
pro-inflammatory and chemotactic cytokines (73). Gene profil-
ing studies have recently broadened the spectrum of genes that
distinguish immature versus mature DCs (74). Mature DCs
prime CTLs, thus polarizing the effector arm of cell-mediated
immunity against the noxious agent (75, 76). By contrast, DCs
conditioned by regulatory T-suppressor cells are “licensed” to
inhibit the initiation of the immune response by inducing T-
helper lymphocyte anergy (77–80). To characterize the molec-
ular changes occurring in tolerogenic DC, Sociu-Foca Cortesini
et al. (81) investigated the mRNA profile of DCs exposed to
allospecific T-helper and T-suppressor cells, showing that im-
mature DCs conditioned by T-suppressor cells differentiate into
tolerogenic DCs with a distinct phenotype as compared with
mature nontolerogenic DCs. The identification of DC gene
pathways induced by suppressor lymphocytes could be of par-
amount importance to dissect the molecular mechanisms under-
lying immune tolerance toward malignant cells and, conse-
quently, to identify new strategies to tackle this problem.

Neverthless, using DNA array technology, Chen et al. (82)
described the molecular portrait characterizing DC at different
stages of maturation. In an animal model, these authors could
link two different DC gene patterns with two levels of effec-
tiveness in inducing tumor regression mediated by DC-based
vaccine. If confirmed in a human model, these results might
explain some vaccination failures observed in the clinical setting
and might indicate new avenues of research in the design of
more effective DC preparation protocols for antitumor vaccines.

T-Cell Biology and Cancer. In animal models, it has
been demonstrated that the activated tumor-specific effector T
cells mainly comprise type 1 CD4� and CD8� lymphocytes,
both of which are important for an effective antitumor immune
response (83). Thus, the cellular and molecular biology of these
T-cell subsets is of substantial interest in the context of both
basic and clinical tumor immunology. Using DNA array tech-
nology, Zhang et al. have started exploring the mRNA steady
state of such tumor-specific T-cells as compared with naı̈ve
T-cells in mice (84). Gene expression profiling has been also
applied to the study of the mechanisms of partial T-cell activa-
tion, which accounts for different cytotoxic capabilities and
might determine the clinical outcome of vaccinated cancer-
bearing patients (85). To mimic a suboptimal CTL activation,
Verdeil et al. (86) developed a model of naı̈ve CD8� T-cells
from transgenic mice expressing an alloreactive T-cell receptor
for which a mutant alloantigen behaved as a partial agonist,
inducing only some of the effector functions induced by the
native alloantigen. To ascertain the molecular bases for the
establishment of divergent fates within the same naı̈ve CD8�

T-cells, they used cDNA microarrays to monitor sequential gene
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expression patterns in conditions of full or partial response of
these naive CD8� T cells. Clusters of genes encoding costimu-
latory molecules and genes controlling cytolytic function, cyto-
kine production, and chemokines were found to discriminate
between partially and fully activated lymphocytes, providing
new insights on the gene pathway potentially leading to an
effective immune reaction against cancer.

Immune Response within the Tumor Microenviron-
ment. Until recently, most studies addressing the immunolog-
ical effects of vaccination in cancer patients have looked at
variations in the level of TAA-specific reactivity in circulating
lymphocytes (87). Results from clinical trials have shown that
vaccination can be quite effective in inducing tumor-specific
T-cell responses that can be easily observed among circulating
lymphocytes. However, the identification of such immune re-
sponses could not be consistently correlated with tumor regres-
sion (88). Thus, it is questionable whether the immunogenic
wave, induced systemically by the vaccine, reaches the tumor

microenvironment. Complementing the analysis of immune re-
sponses in circulating lymphocytes with the study of the tumor
microenvironment may yield information about the quality and
intensity of the elicited immune response within the relevant
arena (88). Using fine-needle aspiration material from mela-
noma metastases (38), we found that tumor nodules undergoing
complete regression in response to peptide-IL-2-based vaccina-
tion were characterized by a different transcript signature as
compared with those progressing (89, 90). Interestingly, many
genes overexpressed in responding melanoma metastases were
immune-related. Among them, we focused on TIA-1 and IL-10.
TIA-1 codes for a Mr 15,000 cytotoxicity-related protein ex-
pressed by CTLs and natural killer (NK) cells and is character-
ized by proapoptotic properties (91). IL-10 is generally consid-
ered an immunosuppressive molecule that can anergize CTLs,
acting both directly (92) and through its inhibitory effects on
DCs (93). However, several preclinical models have shown that
IL-10 can mediate tumor regression, also by stimulating NK

Fig. 4 For an effective anticancer im-
mune response to occur, a coordinated
cascade of cellular/molecular events are
necessary. Within the tumor microenviron-
ment, interleukin 10 (IL-10) overexpres-
sion might contribute to start an effective
integrated innate-adaptive immune re-
sponse against cancer by intervening at
different levels during the following hy-
pothesized tumor immune rejection path-
way: (a) IL-10 stimulates natural killer cell
(NK cell) cytotoxicity both directly (e.g.,
increased TIA-1 expression) and by de-
creasing the production of NK cell inhib-
itors [e.g., reactive oxygen species (ROS)
and nitric oxide (NO)] by tumor infiltrat-
ing macrophages; (b) IL-10 increases the
expression of toll-like receptors (TLR) on
the monocyte-macrophage cell lineage,
thus increasing the sensitivity of dendritic
cell (DC) precursors to the danger signal;
(c) NK cell-mediated tumor cell lysis gen-
erates a greater availability of chemotactic
peptides, tumor-associated antigen (TAA),
and danger signals [e.g., heat shock pro-
teins (HSP) and double-stranded DNA
(dsDNA)], which are necessary to recruit,
upload, and activate immature DC (Imma-
ture DC): upon maturation, these cells
cross-prime CTL in secondary lymphatic
organs (e.g., lymph nodes); (d) IL-10 stim-
ulates the cytolytic activity of tumor-
associated antigen (TAA)-experienced CTLs
and promotes their recruitment acting as a
chemotactic agent for these cells.
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cells activity (94, 95). Furthermore, using cDNA microarray, we
observed that, in vitro, IL-10 induced NK cell (but not CTL)
expression of cytotoxicity-related genes, including TIA-1 (95).
These observations led us to hypothesize that, in the presence of
high levels of IL-10 in the tumor microenvironment, NK cells
might be stimulated to lyse cancer cells, thus increasing TAA
availability and “danger signal” delivery (54) required by DCs
to be activated, ultimately favoring CTLs priming against TAAs
(Ref. 96; Fig. 4). If this theory were proved to be correct, future
anticancer immunotherapy strategies should address the chal-
lenging task of stimulating both innate and adaptive immunity in
a timely fashion.

Because systemic IL-2 administration significantly in-
creases the frequency of tumor regression induced by peptide-
based vaccination of melanoma patients (3), we also investi-
gated the role of this cytokine in facilitating an effective
immune response. It has been postulated that the anticancer
effects of IL-2 are mediated through in vivo expansion and
activation of cytotoxic lymphocytes (97) and/or promotion of
their migration within target tissues (3), but it has become
apparent that IL-2 at the doses used therapeutically has broader
immune/pro-inflammatory effects (98, 99). Which of these ef-
fects has a critical role in mediating tumor regression remains
enigmatic. In our study, we compared early changes in tran-
scriptional profiles of PBMCs with those occurring within the
microenvironment of melanoma metastases after systemic IL-2
administration (100). The results of this work suggested that
IL-2 administration induces three predominant effects: (a) acti-
vation of antigen-presenting monocytes; (b) a massive produc-
tion of chemoattractants that may recruit other immune cells,
among which are the chemokines MIG and PARC, specific for
T cells, to the tumor site; and (c) the activation of lytic mech-
anisms ascribable to monocytes (calgranulin, grancalcin) and
NK cells (e.g., NKG5, NK4). These findings suggest that sys-
temic IL-2 administration may facilitate T-cell effector function
in the target organ not by sustaining their proliferation, as
generally believed, but rather by promoting their migration and
by providing a milieu conducive to their activation in situ
through the activation of antigen-presenting cells. If this hypoth-
esis were correct, then adoptive transfer of effector T-cells
should follow, rather than precede, administration of systemic
IL-2.

CONCLUSIONS
In the near future, the DNA-array approach will be ex-

tremely prolific in identifying and characterizing biological phe-
nomena and will provide, as a consequence, biologically tar-
geted therapies. This will be particularly the case for cancer
immunotherapy. Obviously, attention should be devoted to the
profiling of tumor and not only of the host. Molecular profiling
has been successfully used to identify specific phenotypes that
may help in the subpathological diagnosis of diseases and allow
forecasting of their clinical response and outcome. However,
this strategy has been, thus far, applied only in very limited
circumstances for the understanding of immune-mediated can-
cer rejection in humans. Because a detailed mechanism of how
immunotherapy actually works is still not known, the interac-
tions of various cell types should be taken into account; these

cell types include not only T cells but also other components of
the immune system (e.g., innate immunity cell mediators), as
well as tumor cells. In fact, the failure of current immunother-
apeutic strategies might depend on the unresponsiveness of
immune sentinels to the therapeutic manipulation and/or to the
resistance of malignant cells to the immune response evoked by
the treatment. Tools are now available to study, in real-time,
tumor–host interactions before, during, and after immunother-
apy in humans (while leaving tumor lesions undisturbed) and,
consequently, to identify gene patterns underlying therapeutic
mechanisms or to explain the phenomenon of tumor immune
escape (38).
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