

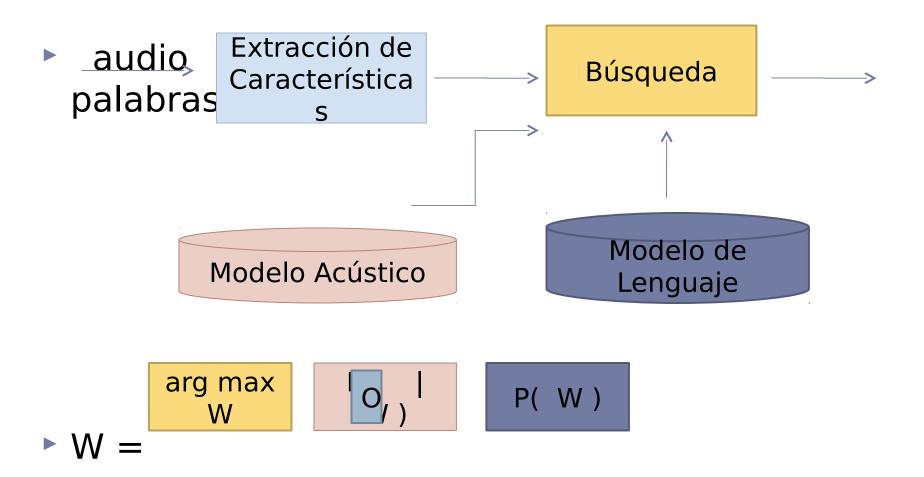
Clustering para la inicialización de HMM en RAH

Jorge Luis Guevara Díaz

Introducción

- Introducción
 - Definicion de RAH
 - Formulación
 - Arquitectura
 - □ Extracción de características
 - □ Modelo acústico
 - □ Modelo del lenguaje
 - □ Búsqueda
- Modelos Ocultos de Markov HMM
 - Definición
 - Algoritmo forward-backward
 - Algoritmo de Viterbi
 - Algoritmo Baum-Welch
- Clustering para inicialización de HMM
 - k-means clustering
 - ► EM
 - SOM clustering
- Aplicación

Reconocimiento automatico del habla arquitectura

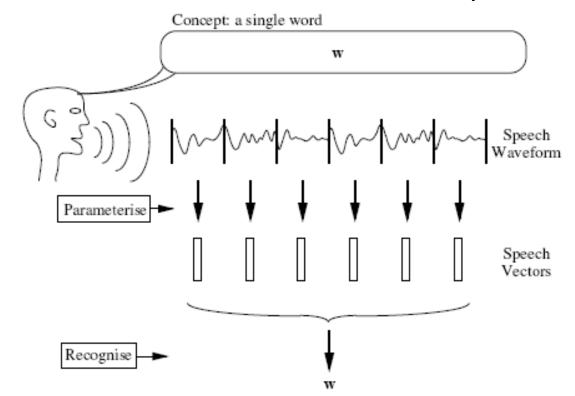


Formulacion

 Cada palabra hablada W es representada por una secuencia de vectores de habla ó observaciones O

$$O = o_1, o_2, \ldots, o_T$$

Ot es el vector de habla en el tiempo t



Formulación

El RAH puede ser formulado como

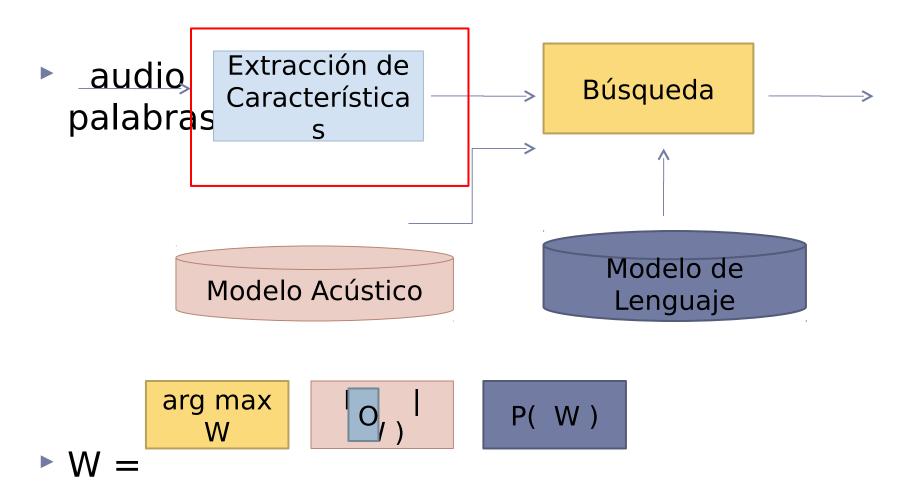
$$\arg\max_{i} \left\{ P(w_i | \boldsymbol{O}) \right\}$$

wi es la i'ava palabra del vocabulario, esta probabilidad no es computable directamente entonces usando la regla de Bayes

$$P(w_i|\mathbf{O}) = \frac{P(\mathbf{O}|w_i)P(w_i)}{P(\mathbf{O})}$$

la palabra más probable depende del likelihood

Reconocimiento automatico del habla arquitectura



Extraccion de carácterísticas

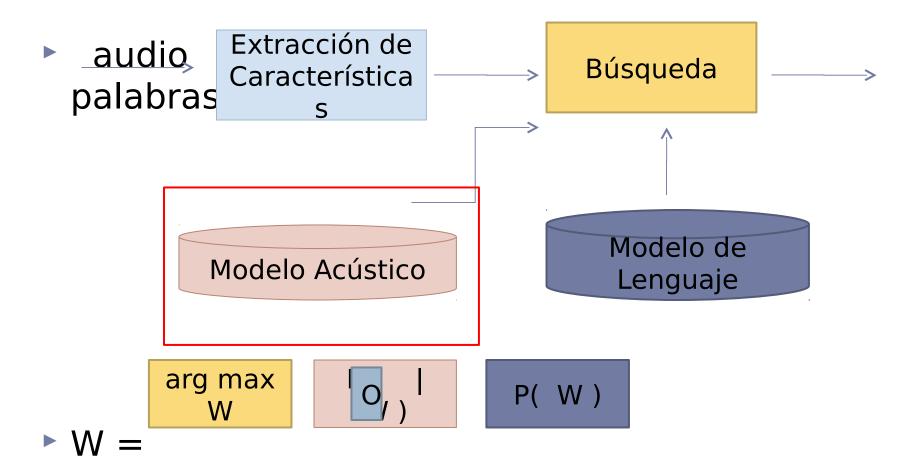
 Objetivo: dada una señal acústica de entrada obtener una codificación característica asociada para dicha señal

Input: Señal de habla

Output: O

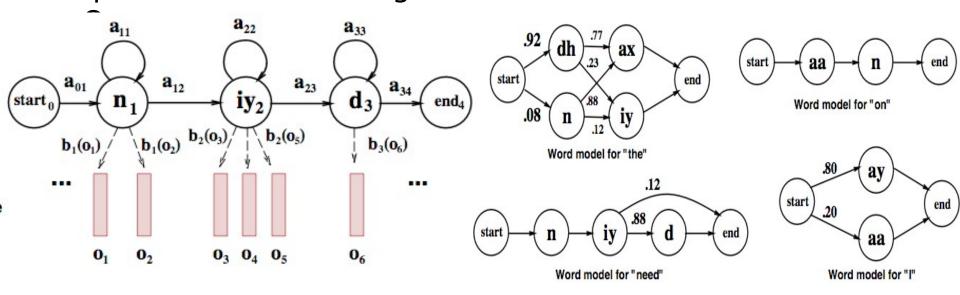
- Principales algoritmos
 - MFCC
 - ► HFCC
 - ▶ PLP
 - LPC
 - LPC-Cepstrum
 - Basados en wavelets

Reconocimiento automatico del habla arquitectura



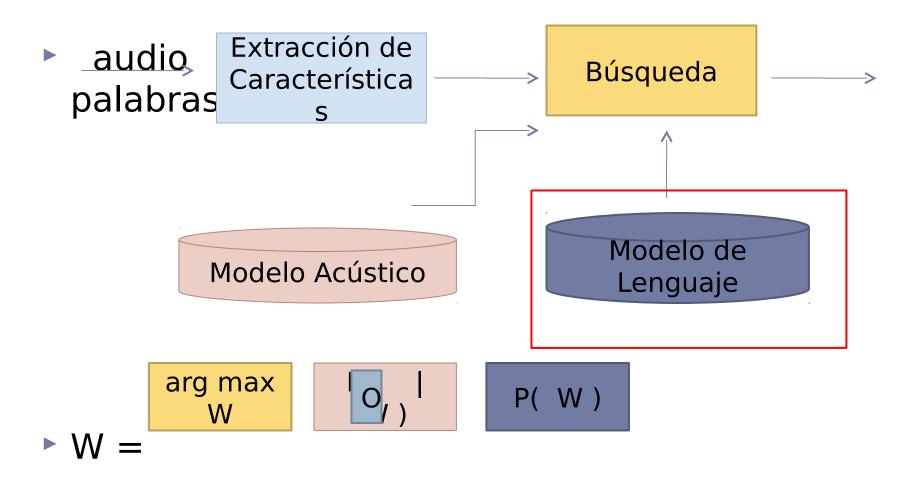
Modelo acustico

 Objetivo: construir modelos estadísticos de palabras que funcionen como generadores de las observaciones

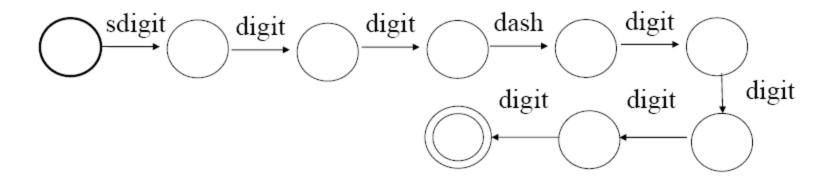


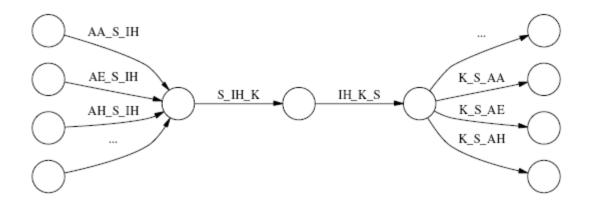
- Modelos ocultos de Markov
 - Modelos de palabras
 - Modelos de pronunciación

Reconocimiento automatico del habla arquitectura



Modelo de Lenguaje



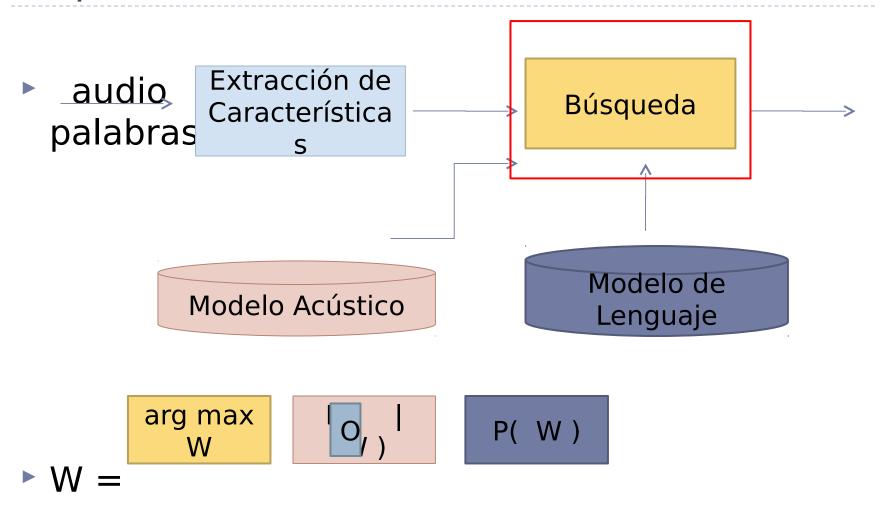


Modelo de Lenguaje

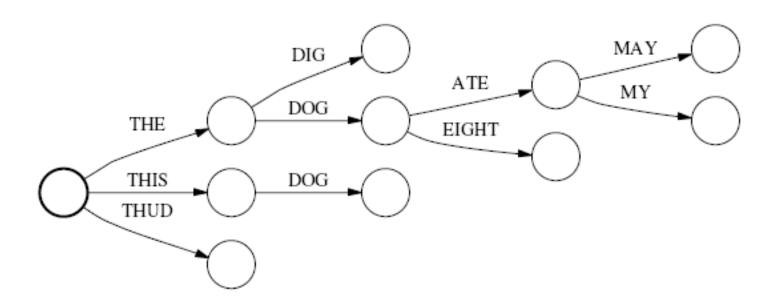
Modela la probabilidad (likelihood) de una palabra dada la palabra(s) previa

- Conceptos:
 - Modelos n-gram:
 - Máquinas de estado finito
 - Gramáticas libres del contexto

Reconocimiento automatico del habla arquitectura



Búsqueda



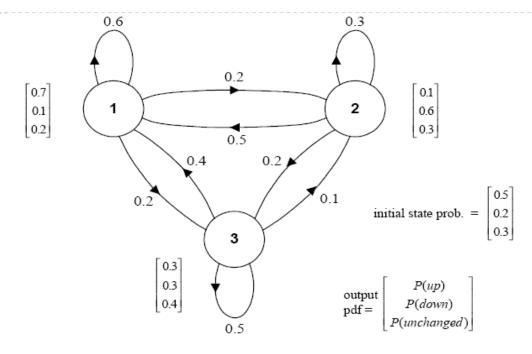
Búsqueda

- Buscar la mejor hipotesis P(O|W) P(W) dado
 - Una secuencia de vectores de caracteristicas acústicas
 (O)
 - Un HMM entrenado (AM)
 - Lexicon (PM)
 - Probabilidades de secuencias de palabras (LM)

Algoritmos

- Búsqueda local beam
- Busqueda A*
- etc

Modelos Ocultos de Markov - HMM



- Problema 1 (evaluación)
- 2. Problema 2 (decodificación)
- 3. Problema 3 (aprendizaje)

Modelos Ocultos de Markov - HMM

- 1. **Problema 1 (evaluación)** Dada una secuencia de observación O = O1...OT y un modelo $\lambda = (A,B,\pi)$, como calcular eficientemente $P(O/\lambda)$, la probabilidad de la observación dado el modelo?- algoritmo forward
- 2. Problema 2 (decodificación) Dada una secuencia de observación O = O1...OT y un modelo λ, como escoger una correspondiente secuencia de estados Q = q1...qT que sea óptima, es decir que mejor explique la observación algoritmo de Viterbi
- 3. Problema 3 (aprendizaje-entrenamiento) Como ajustar los parámetros del modelo $\lambda = (A,B,\pi)$ para maximizar $P(O/\lambda)$? -algoritmo forward-backward (Baum-Welch)

- Para cada palabra del vocabulario realizar un entrenamiento para construir un modelo de palabra, esto se realiza solucionando el problema numero 3
 - algoritmo forward-backward (Baum-Welch)
- Para saber cual es la secuencia de estados y hacer un refinamiento posterior, se solucionará el problema numero 2
 - algoritmo de Viterbi
- El reconocimiento de una palabra se hará solucionando el problema 1, una mejor manera es hacer el reconocimiento solucionando el problema número 2, utilizando el algoritmo de viterbi
 - algoritmo forward, algoritmo de Viterbi

Solución al problema I Algoritmo forward

Inicialización

$$\alpha_1(i) = \pi_i b_i(O_1), \quad 1 \leq i \leq N$$

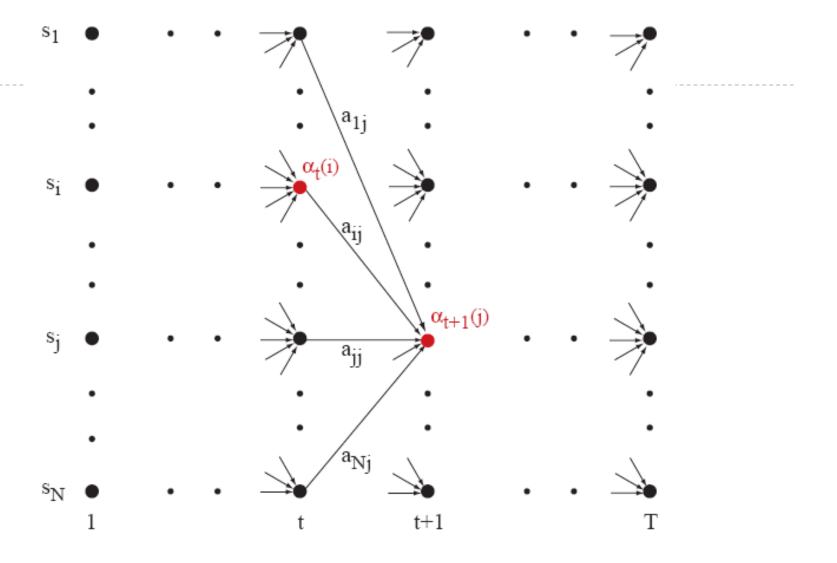
Inducción

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1$$

$$1 \le j \le N.$$

3. Terminación

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$



Solución al problema II Algoritmo Viterbi

1. Inicialización

$$\delta_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

$$\psi_1(i) = 0.$$

2. Inducción

$$\delta_{t}(j) = \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \qquad 2 \leq t \leq T$$

$$1 \leq j \leq N$$

$$\psi_{t}(j) = \operatorname*{argmax}_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}], \qquad 2 \leq t \leq T$$

$$1 \leq j \leq N.$$

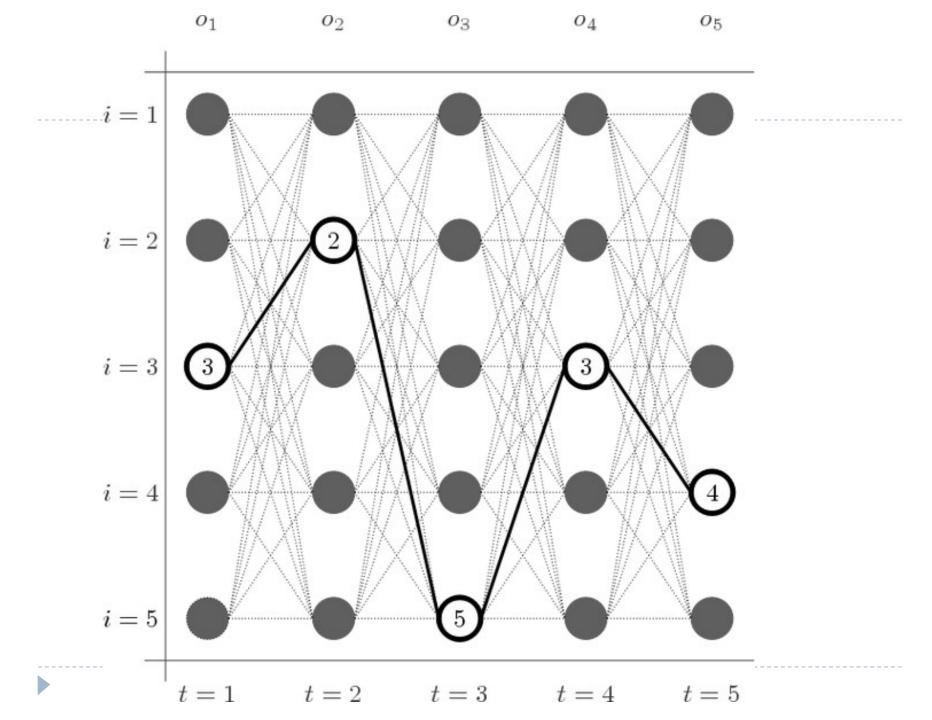
3. Terminación

$$P^* = \max_{1 \le i \le N} [\delta_T(i)]$$

$$q_T^* = \underset{1 \le i \le N}{\operatorname{argmax}} [\delta_T(i)].$$

4. Path backtraking

$$q_t^* = \psi_{t+1}(q_{t+1}^*), \quad t = T-1, T-2, \cdots, 1.$$

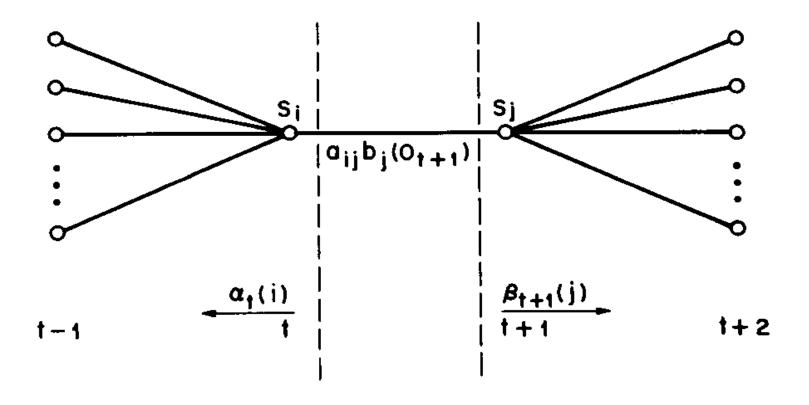


Solución al problema III Algoritmo *Baum Welch*

- 1. Inicializar $\lambda = (A, B, \pi)$
- 2. Calcular α, β, ξ
- 3. Estimar nuevo $\lambda' = (A, B, \pi)$
- 4. Remplazar λ con λ'
- 5. Si no converge ir a etapa 2
- 6. Fin

donde

$$\xi_t(i,j) = P(q_t = S_i, q_{t+1} = S_i | O, \lambda).$$



Clustering para la inicialización de un HMM

Problema:

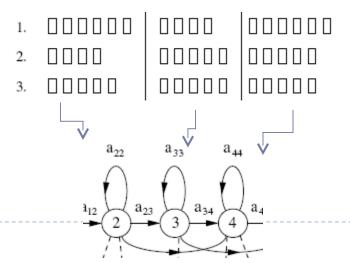
Como estimar los parámetros iniciales de un HMM, dado los vectores de características O?

Hipótesis

Segmentando los vectores de características en número proporcional a los estados del HMM y aplicando posteriormente un algoritmo de clustering en cada segmento para estimar los parámetros de un modelo de mezclas de gaussianas

Clustering para la inicialización de un HMM

- Los HMM para RAH son generalmente modelos izquierda derecha para para capturar la información temporal del habla
- Una primera estimación se da segmentando cada vector de observacion en segmentos proporcionales al número de estados



Clustering para la inicialización de un HMM

 Para cada segmento aplicar un algoritmo de clusterizacion para estimar los parámetros de una distribución de mezclas de gaussianas GMM

Algoritmos

- K-means
- EM (Expectation Maximization)
- Mapa autorganizativo de Kohonen

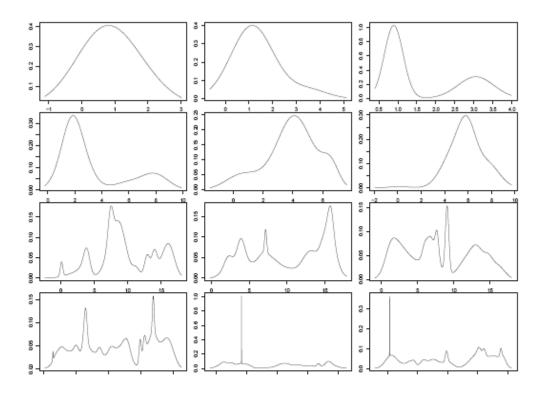
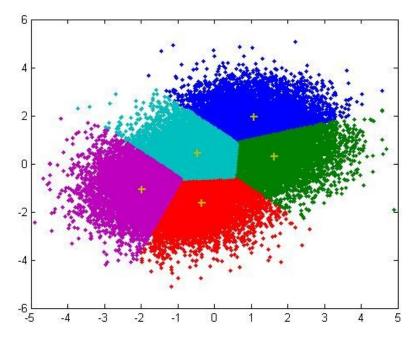


FIGURE 1. Some normal mixture densities for K = 2 (first row), K = 5 (second row), K = 25 (third row) and K = 50 (last row).



Dado un conjunto de observaciones (x1, x2, ..., xn), donde cada xi es d-dimensional el algoritmo k-means clusteriza las n observaciones dentro de k conjuntos (k < n) S={S1,S2, ..., Sk} teniendo algún criterio de minimización, somo sumar el cuadrado de las distancias euclidanas en los clusters</p>

anrovimadas

$$\underset{\mathbf{S}}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in S_{i}} \left\| \mathbf{x}_{j} - \boldsymbol{\mu}_{i} \right\|^{2}$$

La solución de este algoritmo es NP-hard, pero existen varios algoritmos con soluciones

Waiting time vs Eruption time

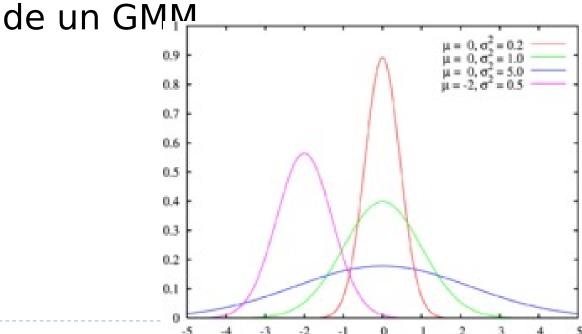
Old Faithful geyser

(suime and the first of the first of

Dar un conjunto inicial de k medias m1(1), ...,mk(1), luego alternar los dos pasos siguientes:

$$\mathsf{AS}_{i}^{:} = \left\{ \mathbf{x}_{j}^{:} : \left\| \mathbf{x}_{j} - \mathbf{m}_{i}^{(t)} \right\| \leq \left\| \mathbf{x}_{j} - \mathbf{m}_{i^{*}}^{(t)} \right\| \text{ for all } i^{*} = 1, \dots, k \right\}$$

Con el algoritmo K-means podemos clusterizar primeramente los segmentos, para luego obtener k medias, k matrices de covarianzas diagonales que permitan modelar k distribuciones gaussianas que forman parte



 Cada gaussiana multidimesional se construye mediante la expresión

$$b_{j}(y) = \frac{1}{|\Sigma_{j}|^{1/2} (2\pi)^{K/2}} \exp \left(\frac{-(y - \mu_{j})^{T} \Sigma_{j}^{-1} (y - \mu_{j})}{2} \right),$$

donde

$$\hat{\boldsymbol{\mu}}_j = \frac{1}{T} \sum_{t=1}^T \boldsymbol{y}_t ,$$

$$\hat{\boldsymbol{\Sigma}}_j = \frac{1}{T} \sum_{t=1}^T (\boldsymbol{y}_t - \hat{\boldsymbol{\mu}}_j) (\boldsymbol{y}_t - \hat{\boldsymbol{\mu}}_j)^T.$$

Para todos los patrones de entrenamiento se tiene:

$$\overline{\mu}_{j} = \frac{\sum_{e=1}^{E} \sum_{t=1}^{e} \gamma_{j}(t, e) \mathbf{y}_{te}}{\sum_{e=1}^{E} \sum_{t=1}^{T_{e}} \gamma_{j}(t, e)},$$

$$\overline{\Sigma}_{j} = \frac{\sum_{e=1}^{E} \sum_{t=1}^{T_{e}} \gamma_{j}(t, e) (\boldsymbol{y}_{te} - \overline{\boldsymbol{\mu}}_{j}) (\boldsymbol{y}_{te} - \overline{\boldsymbol{\mu}}_{j})^{T}}{\sum_{e=1}^{E} \sum_{t=1}^{T_{e}} \gamma_{j}(t, e)},$$

Finalmente se construye un GMM (aca se tiene k=M)

$$b_j(y) = \sum_{m=1}^{M} c_{jm} b_{jm}(y),$$

donde
$$b_{jm}(y) = N(y; \mu_{jm}, \Sigma_{jm})$$
.

$$\sum_{m=1}^{M} c_{jm} = 1.$$

$$\overline{c}_{jm} = \frac{n_{jm}}{n_j},$$

Aplicación

 La aplicación se encuentra en fase experimental y es parte de un sistema de recuperación de información en textos hablados

Ejemplo

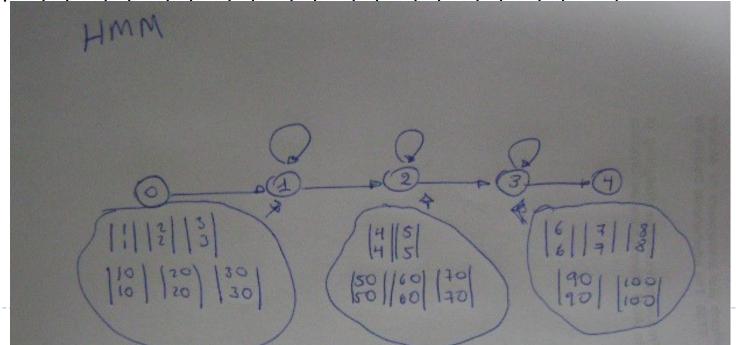
- //observaciones
- □ |1| |2| |3| |4| |5| |6| |7| |1| |2| |3| |4| |5| |6| |7|
- □ |10| |20| |30| |40| |50| |60| |70| |80| |90| |100| |10| |20| |30| |40| |50| |60| |70| |80| |90| |100|

HMM de 5 estac :ermedios

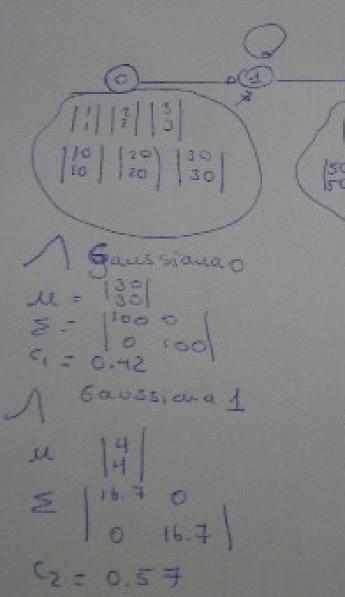
Resultados

//observaciones
 |1| |2| |3| |4| |5| |6| |7|
 |1| |2| |3| |4| |5| |6| |7|

□ |10| |20| |30| |40| |50| |60| |70| |80| |90| |100| |10| |20| |30| |40| |50| |60| |70| |80| |90| |100|



HMM



A Gaussiana o er = /2/2/ Z= 10.5 0) C = 0.4 1 Gaussiana 1 el= \ 10 E = 100 00 C7 = 0-6

Trabajo futuro

- Implementar el algoritmo EM
- Implementar un modelo basado en redes neuronales (SOM)

Referencias

- ▶ Titterington, D., A. Smith, and U. Makov "Statistical Analysis of Finite Mixture Distributions," John Wiley & Sons (1985).
- McLachlan, G.J. and Peel, D. Finite Mixture Models, , Wiley (2000)
- Marin, J.M., Mengersen, K. and Robert, C.P. "Bayesian modelling and inference on mixtures of distributions". *Handbook of Statistics* 25, D. Dey and C.R. Rao (eds). Elsevier-Sciences.
- Lindsay B.G., Mixture Models: Theory, Geometry, and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics Vol. 5, Institute of Mathematical Statistics, Hayward (1995).
- McLachlan, G.J. and Basford, K.E. "Mixture Models: Inference and Applications to Clustering", Marcel Dekker (1988)
- Everitt, B.S. and Hand D.J. "Finite mixture distributions", Chapman & Hall (1981)

alumnos 2007

- Proyectos realizados
 - <u>Extracción de características de la señal de voz utilizando</u>
 <u>LPC-Cepstrum Jorge Velarde, Jhon Franko, Pretel Jesús, Alicia Isolina</u>
 - <u>Prediccion Lineal Perceptual PLP Alan Alfredo Collantes Arana Dany</u> <u>Richard Sari Bustos</u>
 - Audio files compression through wavelets Fredy Carranza-Athó_
 - <u>Máquinas de Sopoerte Vectorial en el Reconocimiento Automático</u> <u>del Habla - Juan Carlos Federico Roeder Moreno</u>
 - ► <u>Efectos de las diferentes transformadas del coseno en RAH Márquez</u> Fernández, Luz Victoria

alumnos 2008

Proyectos realizados

- Extracción de características de palabras aisladas usando MFCC y MFCC con pesos, Nils Murrugarra Llerena
- Reconocimiento automático de palabras aisladas mediante el uso de los extractores de características: MFCC y MODGDF, Jorge Valverde Rebaza
- Uso del método de extracción de características MFCC con formas arbitrarias a nivel de filtros para el reconocimiento de palabras aisladas, Pedro Shiguihara Juárez
- Algoritmo N-Best: Eficiente procedimiento para la búsqueda de las N hipotesis de frases más probables, Luis Mostacero Zárate
- Predicción y Entropia de Textos en Inglés, Juan Grados Vásquez
- Aplicación del algoritmo MFCC-DTW en el reconocimiento de comandos activados por voz, Pedro Linares Kcomt

GRACIAS!!!

