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Stéphane Canu

Normandie Université,France
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ABSTRACT
We propose the support measure data description (SMDD) model

which is a one-class classi�er for sets of probability distributions.

�ere are practical data mining applications where observations

are be�er described by probability distributions rather than in-

dividual points, for instance, point-wise uncertainty, replicates

measurements, clusters of points, and so on. Hence, the anomaly

detection task on those datasets can be formulated as the detection

of anomalous probability distributions w.r.t. the distributions with

non-anomalous behavior in the data. �e SMDD uses the method-

ology of kernel embedding of distributions and it is de�ned as the

minimum enclosing ball of those embeddings. �e SMDD does not

assume anything for the probability distributions but it encodes

prior knowledge of distributions by means of a kernel function. We

conducted an experimental study on the group anomaly detection

task on arti�cial and real datasets to show the e�ectiveness of the

SMDD classi�er.
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1 INTRODUCTION
One-class classi�ers are widely used as data description models

for datasets containing observations of the same kind. Formally, a

one-class classi�er is a function in some space that ”encodes the

behavior” of a set of points following the same probabilistic law.

Such function could be explicitly given by some expert or it can be

learned from data. �ose classi�ers are widely used for anomaly or

novelty detection, clustering and classi�cation tasks [4, 21–23, 29].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ACM SIGKDD 2017, Halifax, Nova Scotia Canada
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00

DOI: 10.475/123 4

We propose the support measure data description (SMDD) one-

class classi�er, a novel approach to successfully describe a set of

probability distributions. Although the SMDD can be used in sev-

eral machine learning tasks on probability distributions (clustering

for example) we study its practical application on the anomaly
detection task over a set of probability distributions, i.e., the task

of detecting anomalous probability distributions. We will show

experimentally that our method has state-of-the-art performance

on that task. �e SMDD classi�er is a kernel method that belongs

to the class of support measure machines, that is, kernel machines

de�ned on sets of probability distributions (measures)
1
. �e SMDD

classi�er describes a dataset of probability distributions by estimat-

ing a decision function f in a Reproducing Kernel Hilbert Space

(RKHS)H that approximates the description of datasets comprised

of probability distributions as in Lemma 2 and �eorem 1 of [18].

�us, our main contributions are:

• We formulate the SMDD one-classi�er as the minimum

enclosing ball in a RKHS of the kernel embeddings of prob-

ability distributions. In this way, all the kernel embeddings

of probability distributions lying within the minimum en-

closing ball will characterize the non-anomalous category

of probability distributions.

• We show that a SMDD classi�er is an approximation of

a minimum volume set of probability distributions. We

show that by imposing geometrical restrictions on the

kernel embeddings of those distributions it is possible to

formulate di�erent versions of the SMDD classi�er. For

instance, we show an scenario when a SMDD is formulated

as a chance constrained program.

• We evaluate the SMDD using synthetic and real datasets as

is the case of �nding anomalous clusters of galaxies from

the Sloan Digital Sky Survey Project. �e experiments

show the e�ectiveness of the SMDD.

ReproducibilityOur code and data is available inhttps://github.
com/jorjasso/SMDD-group-anomaly-detection

2 BACKGROUND AND PROBLEM
DEFINITION

�is section presents an overview of the Hilbert space embedding

of probability distributions and the group anomaly detection task.

We also present the problem de�nition.

2.1 Kernel embeddings of distributions
A kernel embedding of a probability measure P ∈ P into a RKHS

H is the mapping from P toH de�ned by P 7→ µP = EP[k (X , .)],

1
A probability distribution is the probability measure induced by a random variable.

We will use both terms interchangeably.

https://github.com/jorjasso/SMDD-group-anomaly-detection
https://github.com/jorjasso/SMDD-group-anomaly-detection
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where E denotes the expectation,X is a random variable distributed

according P and k is a real-valued positive de�nite kernel on RD ×

RD . Notation k (., s ) means the mapping t → k (t , s ) with �xed

s . �e element µP is called mean map and it is the representative

function for P inH [1, 10, 12, 24, 24, 27, 28]. A su�cient condition

guaranteeing the existence of µP in H is given by assuring that

µP (X ) = EP[k (X ,X )] < ∞, and k being a measurable function [10,

24, 27]. As a consequence, the reproducing property 〈f , µP〉H =
〈f ,EP[k (X , .)]〉H = EP[f (X )] holds for all f ∈ H , where 〈· , ·〉H
denotes the inner product inH .

�e kernel embedding µ : P → H is injective if k is character-
istic [8, 26, 27]. �anks to this, the embedding induces a metric

on the space of probability measures. Examples of characteristic

kernels are the Gaussian, Laplacian, inverse multiquadratics, B2n+1-

splines kernels. [27]. Moreover, empirical estimators µemp for µP
approximate well the true mean map, that is, the term ‖µP − µemp ‖

is bounded by a small value [24]. As consequence, we have the

following kernel on probability measures.

Proposition 2.1 (Kernel on probability measures). A real-
valued kernel on P × P, de�ned by

˜k (P,Q) = 〈µP, µQ〉H =

∫
x∈RD

∫
x′∈RD

k (x, x′)dP(x)dQ(x′) (1)

is positive de�nite [1].

Hilbert space embedding of measures was introduced in [12],

and later by [1, 28], and by [24] when the measures are proba-

bility measures. Some applications in machine learning include,

dimensionality reduction [7], measuring independence of random

variables [11], two-sample test [10], embeddings of Hidden Markov

Models into RKHS [25], among others [26, 27]. �e kernel on

probability measures can be estimated using (2) without requir-

ing ��ing some probabilistic models to the observations. Other

related kernels on distributions which assume probabilistic models

for observations are the Fisher kernel [13], the kernel based on

the symmetrized Kullback-Leibler (KL) divergence on distributions

[17], the Bha�acharyya kernel [16], and the probability product

kernel [14].

2.2 Group anomaly detection
�is kind of anomaly detection is de�ned as the process of �nding

out anomalous groups of points (observations ) from datasets of

the form:

T = {si | si ⊂ R
D , 1 ≤ i ≤ N } (2)

where N ∈ N is the number of observations (groups of points) and

each observation si is a non-empty set of points in RD . Group

anomalies can be categorized in two types: [30] point-based anom-

aly, i.e., the aggregation of anomalous points, or a distribution-based
anomaly, i.e., the anomalous aggregation of non-anomalous points.

Due the nature of this task, it is very important to incorporate all

the information provided by all the points within each si into the

machine learning model. Figure 1 shows how simple features, as

the mean statistic per each si can not work on this scenario.

Previous works on group anomaly detection do not include infor-

mation of the probability distributions of each si into the classi�er,

instead some features are extracted from each group si to further
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Figure 1: a) Red box: Two group anomalies. Green box:
Twonon-anomalous groups. b) From several anomalous and
non-anomalous groups similar to the ones from a) we com-
pute the mean statistic per group. Red points are the means
of anomalous groups. Blue points are the means of non-
anomalous groups. �ere is an overlapping between the
statistical means of anomalous and non-anomalous groups
which turns hard the detection of this type of anomalies.

apply an anomaly detector on the induced feature space [3, 15]. An-

other works ignore the fact that group anomalies can be distribution-

based [5]. State-of-the-art techniques for the group anomaly detec-

tion task are given by the hierarchical probabilistic model [30, 31]

and the one-class support measure machine [19].

2.3 Problem de�nition
�e group anomaly detection can be posed as the task of detecting

anomalies from a set of probability distributions. To that end, let

{P1,P2, . . . , i, . . . ,PN } ⊂ P denote a sample of unknown probabil-

ity distributions, such that each si ∈ T is completely characterized

by Pi , i.e., si ∈ T contains the outcomes of a random variable

Xi ∼ Pi . We de�ne our problem as follows:

Problem Definition 2.2. Design a one-class classi�er for a set of
probability distributions with the following properties: a) it does not
have to assume any form for each Pi , b) it can encode prior knowledge
about Pi by mean of a kernel function, c) the description obtained
by this classi�er is robust in the sense that it can be used to detect
anomalous probability distributions.

We will see in the next section that the SMDD classi�er sat-

isfy those requirements. �e SMDD does not assume any form

for Pi , but it can incorporate prior knowledge about probability

distributions by means of a kernel on probability measures. For the

SMDD, detecting group anomalies equals to �nding out anomalous

distributions by estimating the kernel embeddings outside of the

minimum enclosing ball in the RKHS.

3 THE SMDD CLASSIFIER
�e quantile function and Minimum-Volume (MV) set are primal

concepts used to de�ne one-class classi�ers on {x1, . . . , xN } ⊂ RD

[21–23]. We use them to derive the SMDD classi�er for the i.d.d

sample {P1,P2, . . . ,PN } ⊂ P. Let (P,A, E) be a probability space

where P is the space of all probability measures P on (RD ,B (RD )),
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the set A is some suitable σ -algebra of P and the function E is a

probability measure on (P,A). A MV-set is the set inA satisfying:

G∗γ = argmin

G ∈A
{ρ (G ) | E (G ) ≥ γ ,G ∈ A}, γ ∈ [0, 1], (3)

where ρ is real-valued function onA. �e SMDD classi�er assumes

that the class A is formed by sets of the form :

G (R, c ) = {P ∈ P | ‖µP − c‖
2

H
≤ R2}, (4)

where the set G ∈ A is explicitly parametrized by the hypersphere

parameters: R ∈ R+ and c ∈ H . Function µP ∈ H is the mean map

of P. �e SMDD does not try to �nd a MV-set in the input space

P instead for a speci�c �nite sample {P1,P2, . . . ,PN } ⊂ P of size

N a MV-set G∗γ (R
∗, c∗) associated to that sample is estimated by

optimizing over R ∈ R+ and c ∈ H . �erefore, the function ρ (G )
can be regarded as measure of an enclosing ball in terms of R and c .

�e SMDD estimates the minimum enclosing ball (R, c ) inH using

the set of mean maps {µP1
, µP2
, . . . , µPN } ⊂ H from the sample

{P1,P2, . . . ,PN } ⊂ P as follows:

Problem 1.

min
c ∈H ,R∈R+,ξ ∈RN

R2 + λ
N∑
i=1

ξi

subject to ‖µPi − c ‖
2

H
≤ R2 + ξi , i = 1, . . . ,N

ξi ≥ 0, i = 1, . . . ,N ,

where ξ contains the slack variables ξi and λ is a non-negative

regularization parameter.

Proposition 3.1 (Dual form). �e dual form of the previous
problem is:

Problem 2.

max
α ∈RN

N∑
i=1

αi ˜k (Pi ,Pi ) −
N∑

i, j=1

αiα j ˜k (Pi ,Pj )

subject to 0 ≤ αi ≤ λ, i = 1, . . . ,N

N∑
i=1

αi = 1

whereα is a Lagrange multiplier vector with non negative components
αi and ˜k is the kernel de�ned by (1).

3.1 Representer theorem
�e representer theorem of kernel methods, speci�cally of support

measure machines (�eorem 1, [18]), states that the solution of

those classi�ers is characterized by a linear combination of mean

maps. From the KKT conditions of Problem 1, we have that the

center c can be rewri�en as:

c =
∑
i
αi µPi , i ∈ {i ∈ I | 0 < αi ≤ λ},

where I = {1, 2, . . . ,N }. Moreover, if we de�ne the index sets:

I0 = {i ∈ I | αi = 0}, I< = {i ∈ I | 0 < αi < λ} and Iα =

{i ∈ I | αi = λ} then the sets {Pi | i ∈ I0} and {Pi | i ∈ I< } are

within the description estimated for the SMDD, because their mean

maps are inside the hypersphere (R, c ). �e set {Pi | i ∈ I< } is the

support measure set because their correspondent mean maps are

Algorithm 1: Training a SMDD.

Input: Training set T = {si | si ⊂ R
D , 1 ≤ i ≤ N }.

Input: A positive de�nite kernel k .

Output: �e radius and the norm of the center of a minimum

enclosing hypersphere: (R, ‖c ‖2
H
)

for each si , sj ∈ T , 1 ≤ i, j ≤ N do
Li = |si |, Lj = |sj |;

Ki, j = ˜k (Pi ,Pj ) ≈
1

LiLj
∑Li
l=1

∑Lj
l ′=1

k (x(i )l , x
(j )
l ′ ) x(i )l ∈

si , x
(j )
l ′ ∈ sj

end
α=solveSMDD(K ) (Problem 2);

‖c ‖2
H
= α>Kα ;

R = −η + ‖c‖2
H

(Proposition 3.2);

support vectors in RKHS. Finally, the set {Pi | i ∈ Iα } induces mean

maps outside the hypersphere because they are a�ected for the

regularization parameter λ. �e radius R can be estimated using

following result:

Proposition 3.2. Let L be Lagrangian of Problem 2. If η is the
Lagrange multiplier of the constraint

∑N
i=1

αi = 1, then R2 = −η +

‖c ‖2
H

.

From those results the decision function is a function fromH

to {−1, 1} given by f (µPt ;R∗, c∗) = sign(R2 − ‖µPt − c ‖
2

H
), where

(R∗, c∗) are the minimizers of Problem 1. �anks to the representer

theorem of kernel methods the decision function can be wri�en as

a function from P to {−1, 1} by the following expression

f (Pt ;R∗, c∗) = sign

(
R2 − ˜k (Pt ,Pt ) + 2

∑
i
αi ˜k (PiPt ) − ‖c‖

2

H

)
,

where we used
˜k (Pi ,Pj ) = 〈µPi , µPj 〉H and c =

∑
i αi µPi .

Algorithm 1 shows a training procedure for a SMDD classi�er

on datasets given by Equation 2. �e kernel matrix K is computed

using an empirical estimator for
˜k . �e output of the procedure is

the radius R and the value ‖c ‖2 that are used to de�ne the decision

function.

3.2 SMDD with stationary kernels
Feature maps kI (x, .) under positive de�nite stationary kernels:

kI (x, x′) = f (x−x′) have constant norm [9], i..e., ‖kI (x, .)‖H =
√
ϵ ,

where ϵ is a constant. However, mean maps under stationary ker-

nels do not have constant norm because: ‖µP‖H = ‖EP[kI (X ., )]‖H ≤

EP[‖kI (X ., )‖H ] =
√
|ϵ |. One way to force those mean maps to

have constant norm is by using the following normalization proce-

dure:

˜
˜k (Pi ,Pj ) =

˜k (Pi ,Pj )√
˜k (Pi ,Pi ) ˜k (Pj ,Pj )

=
〈µP, µQ〉H√

〈µP, µP〉H 〈µQ, µQ〉H

, (5)

which preserves the positivity of the kernel and the injectivity of

the embeeding [19]. From the MV-set perspective, the class A

induced by the kernel
˜
˜k (Pi ,Pj ) contains sets of the form:

G (R, c ) = {P ∈ P | ‖µP − c ‖
2

H
≤ R2, ‖µP‖

2

H
= 1}. (6)
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�us, the normalized kernel
˜
˜k (Pi ,Pj ) implies a constant value∑N

i=1
αi

˜
˜k (Pi ,Pi ) in the objective function of Problem 2. Conse-

quently, Problem 2 can be wri�en as

Problem 3.

max
α ∈RN

−

N∑
i, j=1

αiα j
˜
˜k (Pi ,Pj )

subject to 0 ≤ αi ≤ λ, i = 1, . . . ,N

N∑
i=1

αi = 1.

4 SMDDWITH CHANCE CONSTRAINTS
In this section we show how it is possible to create another versions

of SMDD classi�ers by imposing restrictions to the sets of probabil-

ity measures G in the class of sets A. For example if we consider

event sets of the form:
2 A(X ,R, c ) = {ω | ‖k (X (ω), .) − c ‖2

H
≤ R2}

where X ∼ P and ω ∈ RD and, moreover, if we bound the prob-

ability measure of A by an arbitrary value ρ ∈ [0, 1], that is:

P(A(X ,R, c )) ≥ ρ, we end up with a SMDD classi�er that assumes

that the class A is formed by sets of the form:

G (R, c ) = {P ∈ P | P(A(X ,R, c )) ≥ ρ}

≡ {P ∈ P | P(‖k (X , .) − c ‖2
H
≤ R2) ≥ 1 − κ}, κ = 1 − ρ

(7)

If we keep the value of ρ close to one and optimize over (R, c )
such P(A(X ,R, c )) ≥ ρ is satis�ed then we restrict most of the

realizations of k (X , .) to be within the hypersphere (R, c ). �us,

given a set {κ1, . . . ,κN } ⊂ [0, 1]
N

(bounding values) and a sample

{P1,P2, . . . ,PN } ⊂ P, a SMDD model is de�ned by the following

chance constrained optimization problem:

Problem 4.

min
c ∈H ,R∈R,ξ ∈RN

R2 + λ
N∑
i=1

ξi

subject to Pi (‖k (Xi , .) − c (.)‖
2

H
≤ R2 + ξi ) ≥ 1 − κi ,

ξi ≥ 0, .

for i = 1, . . . ,N .
Instead of taking into account every possible outcome of X ∼ Pi

we use the Markov’s inequality to bound the probabilistic con-

straints. Markov’s inequality states that P(X ≥ t ) is bounded

by EP[X ]/t , only if X ∼ P is a nonnegative random variable and

t > 0. Using Markov’s inequality, and noticing that each chance

constraint can be rewri�en as Pi (‖k (Xi , .)−c (.)‖
2

H
≥ R2+ξi ) ≤ κi ,

the following expression

Pi (‖k (Xi , .) − c (.)‖
2

H
≥ R2 + ξi ) ≤

EPi [‖k (Xi , .) − c (.)‖
2

H
]

R2 + ξi
, (8)

2
We consider a random vector de�ned on the probability space (Ω, F , P) as a Borel

measurable map: X : Ω → RD where Ω = RD and F = B (RD ). If X satisfy

X (ω ) = ω, ∀ω ∈ Ω, i.e, X is an identity map, then for B ∈ B (RD ) the probability

measure (probability distribution) induced by X on RD given by PX (B ) = P{ω :

X (ω ) ∈ B } equals to the probability measure P(B ), i.e., PX = P.

holds, for all i = 1, 2, . . . ,N . Moreover, we impose κi as being an

upper bound for the i constraint:

EP[‖k (Xi , .) − c (.)‖
2

H
]/(R2 + ξi ) ≤ κi (9)

We have the following result.

Proposition 4.1.

EP[‖k (X , .) − c (.)‖
2

H
] = tr (ΣH ) + ‖µP − c (.)‖

2

H
,

where3

tr (ΣH ) = EP[k (X ,X )] − ˜k (P,P). (10)

�us, by replacing the result given in Proposition 4.1 into (9)

and then into the constrains of Problem 4 we get a SMDD with non

probabilistic constraints expressed as the following optimization

problem

Problem 5.

min
c ∈H ,R∈R,ξ ∈RN

R2 + λ
N∑
i=1

ξi

subject to ‖µPi − c (.)‖
2

H
≤ (R2 + ξi )κi − tr (Σ

H
i ),

ξi ≥ 0, i = 1, . . . ,N

where tr (ΣHi ) is given by (10).

�e dual form of this problem is presented in the next proposi-

tion.

Proposition 4.2 (Dual form). �e dual form of Prob. 5 is given
by the following fractional programming problem4:

Problem 6.

max
α ∈RN

N∑
i=1

αi 〈µPi , µPi 〉H −

∑N
i, j=1

αiα j 〈µPi , µPj 〉H∑N
i=1

αi
+

N∑
i=1

αi tr (Σ
H
i )

subject to 0 ≤ αiκi ≤ λ, i = 1, . . . ,N

N∑
i=1

αiκi = 1,

where 〈µPi , µPj 〉H is computed by ˜k (Pi ,Pj ), α is a Lagrange multi-
plier vector with non negative components αi and tr (ΣHi ) is given
by (10).

4.1 Representer theorem
�e representer theorem is given by the following proposition:

Proposition 4.3 (Representer theorem). Let be the index sets:
I = {1, 2, . . . ,N }, I0 = {i ∈ I | αi = 0}, I< = {i ∈ I | 0 < αiκi <
λ} and Iα = {i ∈ I | αiκi = λ}. �en,

c (.) =

∑
i αi µPi∑
i αi

, i ∈ I< ∪ Iα , (11)

Furthermore, the sets {Pi , | i ∈ I0} and {Pi , | i ∈ I< } are within the
description (the MV-set) estimated by the SMDD. �e set {Pi , | i ∈ Iα }
induce mean maps outside of the hypersphere in the RKHS. �is set
depend on the regularization parameter λ.

�e radius R can be estimated with the following result

3
Formally, ΣH is the covariance operator on H (De�nition �).

4
A reference for this kind of optimization problem is [6].
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Proposition 4.4. Let η be the Lagrange multiplier of the con-
straint

∑N
i=1

αiκi = 1 of the Lagrangian of Problem 6, then R2 = −η.

�e decision function is the map from H to {−1, 1} given by

f (µPt ;R, c ) = sign

(
R2 − ‖µPt − c ‖2

H
− tr (ΣHt )

)
which can be

rewri�en as the following map from P to {−1, 1} :

sign

(
R2− ˜k (Pt ,Pt )+2

∑
i
αi ˜k (Pi ,Pt )−

∑
i, j

αiα j ˜k (Pi ,Pj )−tr (Σ
H
t )

)
(12)

5 RELATEDWORK
�e closest machine learning model to the SMDD is the One-class

support measure machine (OCSMM) [19, 22]. Making a parallel,

OCSMM considers that the class A consist of sets of the form:

G ( f ,b) = {P ∈ P | 〈f , µP〉H ≥ b}. SMDD models and OCSMM are

not equivalent, but they are in the following scenario.

Proposition 5.1. SMDD given by Problem 2 and Problem 3 and
OCSMM are equivalent if the kernel used for all of them is the one
given by (5). Moreover, the deterministic version of the SMDD with
chance constraints given by Problem 6 is equivalent to OCSMM with
kernel (5) if it uses joint constraints: κ1 = κ2 = · · · = κN , the same
covariance operator ΣH

1
= ΣH

2
= · · · = ΣHN and a kernel given by

(5).

A connection between kernel density estimation and OCSMM

was described in [19, 22] for the case of training sets of gaussian

distributions.

6 EXPERIMENTS
�is section perform an experimental study of performance of the

SMDD models on the task of group anomaly detection. To that

end, we used an arti�cial dataset with four types of group anom-

alies. Moreover, we used astronomical data from the Sloan Digital
Sky Survey with the aim to �nd out anomalous galaxy clusters

(Section 6.3).

6.1 Experimental setting
We used the AUC measure as performance metric estimated by a

nested cross validation procedure. We experimented with several

SMDD models, the Support vector data description method and

the OCSMM. �e kernels on probability measures were estimated

using empirical estimators. All the experiments described in this

section can be reproduced using the code in h�ps://github.com/

jorjasso/SMDD-group-anomaly-detection. Next, we describe in

detail such procedures in the sections below.

6.1.1 Kernel and covariance estimation. We used a Gaussian

kernel k (x ,y) = exp−γ ‖x − y‖2,γ > 0 as base kernel for the kernel

on probability measures
˜k given by Equation (1). Using a dataset as

the one given by (2) we approximated
˜k by the empirical estimator:

˜k (Pi ,Pj ) ≈
1

LiLj

Li∑
l=1

Lj∑
l ′=1

k (x
(i )
l ,y

(j )
l ′ ), (13)

where x
(i )
1≤l ≤Li

and y
(j )
1≤l ′≤Lj

are elements in the sets si and sj ,

respectively, and Li and Lj are the cardinality of that sets. We also

approximated the trace of the covariance operator in a RKHS given

by Equation (10) by the empirical estimator:

tr (ΣHi ) ≈
1

Li − 1

Li∑
l=1

k (x
(i )
l ,x

(i )
l )

−
1

Li (Li − 1)

Li∑
l=1

Li∑
l=1

k (x
(i )
l ,x

(i )
l ).

(14)

6.1.2 Classifiers. Table 1 shows the models used in the experi-

ments. We remark that the SVDD classi�er under this experimental

se�ing, i.e., using a Gaussian kernel, is equivalent to the One-class

support vector machine [22]. We trained the SVDD model using the

empirical mean per group. �e OCSMM is the one-class support

vector machine with kernel
˜k [19]. �e SMDD is the classi�er given

by Problem 2 with kernel
˜k . �e SMDD.N is the classi�er given by

Problem 2 but with the normalized
˜
˜k , we point out that by Propo-

sition 5.1 the SMDD.N is equivalent to a OCSMM classi�er with

the normalized
˜
˜k . �e SMDD.C.k.1 and SMDD.C.k.1.N classi�ers

are the SMDD’s from Problem 6 with kernels
˜k and

˜
˜k , respectively.

For similar experiments with generative models vs the OCSMM

classi�er in a the same task we refer [19].

Model Problem/Ref. kernel

SVDD [29] Gaussian

OCSMM [19] Eq (1)

SMDD 2 Eq (1)

SMDD.C.k.1 6 Eq (1)

SMDD.N 3 Eq (5)

SMDD.C.k.1.N 6 Eq (5)

Table 1: One-class classi�ers used in the experiments

6.1.3 Nested cross validation experiments. �e main di�culty in

the estimation of a description of datasets by one-class classi�ers

is that it is hard to perform model selection on unlabeled data and

moreover it is unusual to have a set of anomalies beforehand. To

overcome that, we arti�cially introduced anomalies into the original

unlabeled data and we added a label to identify whether or not an

observation is a group anomaly. �at resulted in a dataset with

two classes: anomalous and non-anomalous, although this se�ing

resembles to a binary classi�cation task we emphasize that one-class

classi�ers as the ones presented in this paper do not take account

the labels of observations in the estimation of the description of

the data. With that in mind, we performed the experiments using

a nested cross-validation procedure (it is know that the results

using this type of cross validation are less biased [2]) which uses

an internal loop to perform model selection and an outer loop to

access the model performance. Notice that each time we trained

the classi�er either within the inner loop for model selection or the

outer loop we only used the observations from the non-anomalous

class, however we validated it (in the inner loop) or test it (in

https://github.com/jorjasso/SMDD-group-anomaly-detection
https://github.com/jorjasso/SMDD-group-anomaly-detection
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the outer loop) using both labels. We used the Area under the

ROC curve (AUC) as a target metric either to access the model

performance in the outer loop or for optimize the hyper-parameters

in the model selection within the inner loop. �e model selection

(internal loop) was done by estimating the hyper-parameters with

largest cross validation AUC value over a grid of hyper-parameters.

�e hyper-parameters were given by the regularization parameter

λ and the kernel parameter γ .

6.2 Group Anomaly Detection on a Gaussian
Mixture Distribution dataset

Figure 2: Group anomaly detection dataset. Green and yel-
low boxes contain non-anomalous groups of points. Red,
blue, and magenta boxes contain anomalous groups of
points.

We generated a dataset of 300 non-anomalous groups. Each

non-anomalous group is a sample drawn from either of two dif-

ferent Gaussian mixture distributions, the probability of chosen

either one distribution or the another was 0.5 �e parameters

for the �rst Gaussian mixture distribution were mixture weights:

(0.33, 0.64, 0.03); means: (−1.7,−1), (1.7,−1), (0, 2); and 0.2 ∗ I2 as

the sharing covariance matrix, where I2 denotes the 2 × 2 identity

matrix. �e second Gaussian mixture distribution has the same

parameters but the mixture weights were given by (0.33, 0.03, 0.64).
�e number of points per group was given by a value drawn from

a Poisson distribution with parameter β = 100. �e green box in

Figure 2 shows three non-anomalous groups for the �rst Gaussian

mixture distribution and the yellow box shows two non-anomalous

groups for the another one.

We experimented with four types of group anomalies, we de-

scribe them as follows

6.2.1 First type of group anomalies. We generated 30 anomalous

groups. Each group is a sample drawn from a normal distribution

with parameters: mean (−0.4, 1) and covariance matrix given by an

2× 2 identity matrix. �e number of points per anomalous group is

a value taken from a Poisson distribution with parameter β = 100.

�e magenta box in Figure 2 shows �ve of those groups.

6.2.2 Second type of group anomalies. We generated 30 anoma-

lous groups. Each group is a sample drawn from a Gaussian mixture

distribution with parameters weights: (0.1, 0.08, 0.07, 0.75); means:

(−1.7,−1), (1.7,−1), (0, 2), (0.6,−1); and a sharing covariance ma-

trix given by 0.2 ∗ I2. �e number of points per anomalous group

was the same as the First type of group anomalies. Blue box in

Figure 2 shows �ve of those groups.

6.2.3 Third type of group anomalies. We generated 30 anoma-

lous groups. Each group is a sample drawn from a Gaussian mixture

distribution with parameters weights: (0.14, 0.1, 0.28, 0.48); means:

(−1.7,−1), (1.7,−1), (0, 2), (−0.5, 1); and 0.2 ∗ I2 as the sharing

covariance matrix. �e number of points per anomalous group was

the same as the First type of group anomalies. Red box in Figure 2

shows �ve of those groups.

6.2.4 Fourth type of group anomalies. We generated 30 anoma-

lous groups by combining 10 groups of the �rst type of group

anomalies, 10 groups from the second type and 10 groups from the

third type. �e number of points per anomalous group was the

same as the First type of group anomalies.

6.2.5 Results. Figure 3 shows the results. Each box plot con-

tain information of the AUC measures from the outer loop of the

nested cross validation procedure. For the �rst type of anomalies

we observed that the OCSMM, SMDD.C.k.1 and SMDD.C.k.1.N

outperform the other classi�ers. �e SMDD.N classi�er (which is

equivalent to a OCSMM with normalized kernel), the SMDD and

the SVDD, have a poor performance in terms of the AUC mea-

sure. For the second type of anomalies, all the support measure

machines perform badly, and a simple SVDD outperforms all the

other classi�ers. It seems that for this particular se�ing a simple

statistic per group, such as the mean, it is enough to describe the

non-anomalous groups. For the third and fourth type of anomalies

we observed that the OCSMM, SMDD.C.k.1 and SMDD.C.k.1.N can

detect more anomalies than the other models.

6.3 Group Anomaly Detection on Astronomical
Data

�e aim of this experiment was to test the SMDD classi�ers using

real data. To this end, we used data from �e Sloan Digital Sky
Survey5 (SDSS) project. �is data contains massive spectroscopic

surveys of the Milky Way galaxy and extra solar planetary systems.

We used the same se�ing described in [19, 20, 31] to construct

the non-anomalous groups. �at is, initially, the dataset contains

information of 7530 galaxies, each galaxy is represented by 4000

values of spectral information. �en, this dataset is processed by

down-sampling each observation to get only 500 values of spectral

information. Finally, it is formed 505 groups of galaxies using a clus-

tering procedure. �us, we used a dataset of 505 non-anomalous

groups of galaxies, where each group of galaxies contain between

10 − 15 galaxies. In order to reduce even more the dimensional-

ity of the data, we applied a Principal Component Analysis (PCA)

procedure. We noticed that the �rst four PCA components pre-

served 85% of the variance. �en the dataset of non-anomalous

groups is formed by 505 groups, each of them containing the four

dimensional PCA vectors. Figure 4 summarize this procedure.

5
h�p://www.sdss3.org/
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(a) Results �rst type of anomalies (b) Results second type of anomalies (c) Results third type of anomalies (d) Results fourth type of anomalies

Figure 3: Experimental results for a group anomaly detection task over a Gaussian mixture distribution dataset.

PCA

PCA

PCA

PCA

PCA

PCA

Figure 4: Feature extraction pipeline for the group anomaly
experiment on astronomical data .

In order to verify the performance of the SMDD classi�ers we

injected three types of group anomalies. We describe them as

follows.

6.3.1 First type of group anomalies. We injected 50 groups anom-

alies. Each group anomaly is formed by randomly selecting n galax-

ies from all the dataset of galaxies, where n is a value distributed

according to a Poisson distribution with parameter β = 15.

6.3.2 Second type of group anomalies. We injected 50 groups

anomalies where each group anomaly is a sample from a Gauss-

ian mixture distribution with the following parameters: weights

= {1/3, 1/3, 1/3}, means ={mean(A1),mean(A2),mean(A3)}, where

A1,A2,A3 are three random subsets of galaxies from the original

set of galaxies, and covariance matrix given by the 0.5 ∗ Σ, where Σ
is the mean of the empirical covariance matrices of non-anomalous

groups.

6.3.3 Third type of group anomalies. We use the same se�ing

as the second type of group anomalies but we set the covariance

matrix of the Gaussian mixture distribution to be 1.0 ∗ Σ

6.3.4 Results. Figure 5 shows the results in terms of the AUC

metric for the models in Table 1. We observed that for the �rst type

of anomalies all the SMDD models outperform the other methods

and the OCSMM has the worst performance. For the second type

of anomalies the OCSMM, SMDD.C.K.1 and SMDD.C.K.1.N have

be�er performance and the SMDD and SMDD.N (or OCSMM with

normalized kernel) have the worst performance. For the third type

of anomalies all the measure machines performs equivalent and

the SVDD has the best performance.

6.4 Discussion
From the last experiments it is possible to observe that either the

SMDD.C.K.1 or the SMDD.C.K.1.N are the classi�ers with best

performance across all the experiments: they have small variance

of the AUC metric per experiment, moreover, the variance of the

AUC metric across all the experiments is small as well. We observe

also that the performance of the other measures machines and the

SVDD will depend on the type of group anomalies. For example, a

SVDD (or a one class support vector machine) would have a good

performance if a statistic per group is a discriminant feature.

7 CONCLUSIONS
In this paper, we propose the SMDD one-class classi�er as a tool to

estimate the description of a set of probability distributions. �e

SMDD is a kernel method, speci�cally, it is a support measure

machine whose solution is a function that depend on a subset of the

kernel embeddings of probability distributions, and hence a subset

of the training set: the support measures. �e SMDD model does not

assume any form for each probability distribution, however it can

include prior knowledge of the distribution via a kernel function.

We experimentally show the robustness of the estimated description

of a set of probability distribution by the SMDD through a set of

experiments on the group anomaly detection task.
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(a) Results Experiment I - Sloan dataset (b) Results Experiment II - Sloan dataset (c) Results Experiment III- Sloan dataset

Figure 5: �e results of the experiment for the group anomaly detection task over a SDSS III dataset.
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