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Who am |7

= Bachelor graduate project
Title A Speech Recognition system for vocals recognition using a feedforward neural net.
Supervisor Professor Ronald Leon
Description We performed experiments with a feed-forward neural net with back-propagation
algorithm to classify vocal sounds.

s |nformatics engineering thesis
Title Feature Extraction using Wavelets for Speech Recognition
Supervisor Professor Ronald Leon

We developed an algorithm for feature extraction from speech audio using wavelet

Description
theory, we applied such algorithm in isolated speech recognition. Text in spanish

@ Three papers in local peruvian conferences.
@ Lorito. A isolated word recognition from scratch, in JAVA. https://github.com/jorjasso
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Who am |7

= Masters Thesis
Title Speech Recognition Framework for Information Retrieval
Supervisor Professor Ronald Leon

Description We explore speech recognition techniques for text retrieval from speech audios in
spanish language. Text in spanish.

https://github.com/jorjasso
@ Speech Miner. Speech recognition system using MFCC, HMM. using HTK
@ SOM-TSP. SOM neural network to solve the TSP problem in JAVA.
@ FNN. Neural network for digit classification in JAVA
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Teaching Experience
2008-2009 Speech Recognition, 5rd year BSc, National University of Trujillo, Peru.
2008-2009 Computer Graphics, 3rd year BSe, National University of Trujillo, Peru.
2008-2009 Image Processing, 4rd year BSc, National University of Trujillo, Peru.
2007-2008 Numerical Computing, 3rd year BSc, National University of Trujillo, Peru.
2007-2008 Artificial Intelligence, 4rd year BSc, National University of Trujillo, Peru.
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Who am |7

s Doctoral Thesis
Title Supervised Machine Learning using kernel methods, probability measures and fuzzy
set theory
Supervisor Professor Roberto Hirata Junior, University of Sao Paulo, Brazil.

Internship Professor Stephane Canu, INSA-ROUEN, France.
Supervisor
Description This thesis explored the idea of learning on training sets of points, where each
individual point is itself a set. We treat each point-set as a realization of a fuzzy
random variable or, as a realization of a random probability measure. We develop
kernel algorithms to deal with such data.

Similarity between fuzzy sets using kernels
@ link between fuzzy systems and kernels
@ theory of positive definite kernels on fuzzy sets
@ kernels induced by fuzzy distance

A data description model for set of distributions

November 03 7/ 49

(IME-USP)



https://github.com/jorjasso

Who am |7

Title

Supervisor

Internship
Supervisor

Description

Doctoral Thesis

Supervised Machine Learning using kernel methods, probability measures and fuzzy
set theory

Professor Roberto Hirata Junior, University of Sao Paulo, Brazil.

Professor Stephane Canu, INSA-ROUEN, France.

This thesis explored the idea of learning on training sets of points, where each
individual point is itself a set. We treat each point-set as a realization of a fuzzy
random variable or, as a realization of a random probability measure. We develop
kernel algorithms to deal with such data.

Similarity between fuzzy sets using kernels

@ link between fuzzy systems and kernels

@ theory of positive definite kernels on fuzzy sets

@ kernels induced by fuzzy distance

A data description model for set of distributions
https://github.com/jorjasso

@ Fuzzy kernel hypothesis testing

@ TSK kernels on fuzzy sets, classification of low quality datasets.

@ Group anomaly detection using SMDD.

(IME-USP)
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Introduction

Definition (Anomaly)

An anomaly is an observation which deviates so much from the other

observations as to arouse suspicions that it was generated by a different
mechanism?

Figure : Rare starfish found. One in a million!®

a) Hawkins D., Identification of Outliers, Chapman and Hall, 1980.

b) https://twitter.com/gotham3/status/421258659620855809
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Some applications include?:

@ Fraud detection. i.e., abnormal buying patterns;

@ Medicine. i.e., Unusual symptoms, abnormal tests;
@ Sports. i.e., Outstanding players;
@ Measurement errors. i.e., abnormal values.
] Cyber-intrusion detection ;
@ Industrial damage detection;
@ Image processing,
@ Textual anomaly detection
Y YYYYYy
‘ » 39
’ L
) hLO. & QS
: XA X
.‘
Schottky Defec:
oo we e =0 L*'.. 'Ay "t‘i‘
(a) Unusual contraction. (b) Ceramic defects?. (C) Traffic jam recognition.

a)Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv.
b) https://www.nde-ed.org/

c) https://www.youtube.com/watch?v=DAXUzWnsiQk
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Techniques:

Generative models. i.e., HMM, GMM;
Unsupervised methods. i.e., clustering, distance-based, density based;
Discriminative models. i.e., SVM, neural networks;

Information Theoretic Methods, Geometric methods

Flgu re ! 2D-anomalies®.

a)Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv.
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Given a data set of the form
T= {sf};\lzlv (1)

where s; = {xgi),xg), e ’X(Li,-)} ~ IP;, and P; defined on (RP, B(RP).

Try to detect anomalies or group anomalies from T
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Problem
Given a data set of the form

T = {si}y, (2)

where s; = {xgi),xgi), ... ,x(Lii)} ~ P;, and P; defined on (RP, B(RP).
Try to detect anomalies or group anomalies from T

A more complex scenario
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Introduction

Examples of datasets of this form

T = {si}iy, (3)

ACILELERERA
FIEFENEITNEE
FFESE NV H

(c) usps.

(a) Cluster of galaxies

a) http://www.sdss3.org/. b) http://www.vlfeat.org. c) Chang-Dong et al. "Multi-Exemplar Affinity Propagation”,

Guevara 2015 (IME-USP) IBM-Research November 03, 2015.
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Group anomaly

Group of points with unexpected behavior wrt a dataset of group of points.

@ Point-based group anomalies aggregation of anomalous points

@ @
[
ﬁii

@ Distributed-based group anomalies anomalous aggregation of
non-anomalous points.
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Previous work

@ Feature engineering approach
o Feature extraction from each group®?
o Clustering point anomalies
However, they ignore distributed-based group anomalies.
@ Generative approach
o Flexible genre models©
o Hierarchical probabilistic models?
However, procedures rely on parametric assumptions
@ Discriminative approach
e Support measure machines®
e Our work

nonparametric, performance depends on the kernel choice.

2 Chan et al. "Modeling multiple time series for anomaly detection," in Data Mining, IEEE.

b Keogh et al. "HOT SAX: efficiently finding the most unusual time series subsequence," in Data Mining , IEEE.
€ L Xion et al. "Group Anomaly Detection using Flexible Genre Models", NIPS.

d L Xion et al. "Hierarchical Probabilistic Models for Group Anomaly Detection", AISTATS. € Muandet et a.

"One-Class Support Measure Machines for Group Anomaly Detection", UAI.
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© Hilbert space embedding for distributions
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RKHS, where the magic happens

Figure : Kernel mapping?

Figure from Shawe-Taylor et al. "Kernel Methods for Pattern Analysis". Cambridge University Press.
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RKHS, where the magic happens

Main ingredient

@ A real-valued symmetric positive definite kernel k.
N
Zi:l,j:l cicik(xi, x;) > 0

X —=H
x> k(.,x)

i /k(\)

k:XxX—>R

Vo e X, k(.,x) € H
Vee X, VfeH (f, k(.
Ve, o' € X k(z,z') = (k(.,z
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Kernel methods

K £(x)=ZouK(xi,x)
DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION
e
@ svMm @ svDD @ Kernel regression
@ kernel PCA @ MKL @ Kernel two-sample test
@ Gaussian process @ smMDD @ kernel spectral clustering

Guevara 2015 (IME-USP)
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Kernel methods

K > £(x)=ZouK(xi,x)
DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION
>
@ svMm @ svDD @ Kernel regression
@ kernel PCA @ MKL @ Kernel two-sample test
@ Gaussian process @ sMDD @ kernel spectral clustering

Representer Theorem

= a;smin Cost ((x1,y1, f(x1)), - - - (xw, v, Fxw) + (I 1) (4)
€EH
N
() = k(. x;) (5)
i=1
Guevara 2015 (IME-USP) IBM-Research November 03, 201 21 / 49




Remembering the problem

Detecting group anomalies from the set 7 = {s;}" ;.
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Hilbert space embedding for distributions

Framework for embedding probability measures into a RKHS H.

Definition
The embedding of probability measures P € P into H is given by the
mapping

w:P — H
P — up=Eplk(X,.)]= /eRD k(x,.)dP(x).

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 23 / 49



Hilbert space embedding for distributions

Properties
o if up(X) = Ep[k(X, X)] < oo, with k being measurable then pp € H
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Hilbert space embedding for distributions

Properties
o if up(X) = Ep[k(X, X)] < oo, with k being measurable then up € H
@ Reproducing property (f, up) = (f,Ep[k(X,.)]) = Ep[f(X)] holds for
all f e H
@ up is the representative function of P
e if k is characteristic then p : P — H is injective

@ The term ||ip — ftempl|, is bounded, where piemp is a empirical
estimator of fiemp
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Kernel on probability measures

The mapping

PxP — R
(P,Q) — (P,Q)p = (up, po)n

defines an inner product on P. the real-valued kernel on P x P, defined by

;(PaQ ]P Q 'P = )LLP7ILLQ>

/ RO /R k(x,x')dP(x)dQ(x') (6)

is positive definite.
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@ SMDD models
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Minimum volume sets (MV-set)

@ a MV-set is a set satisfying some optimization criteria.

Definition (MV-set for probability measures)

Let (P, A,E) be a probability space, where P is the space of all probability
measures P on (RP, B(RP)), A is some suitable o-algebra of P and £ is a
probability measure on (P, A). The MV-set is the set

Gy = argmin{p(G)|£(G) > a}, (7)
GeA

where p is a reference measure on A and a € [0,1]. The MV-set G,
describes a fraction o of the mass concentration of £.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 27 / 49



Minimum volume sets (MV-set)

o Assuming that {P;}"; is an i.i.d. sample distributed according to £

@ Assuming that each IP; is unknown.
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Minimum volume sets (MV-set)

o Assuming that {P;}"; is an i.i.d. sample distributed according to £

@ Assuming that each IP; is unknown.

Examples of three different classes of volume-sets

Gi(R,c) = {B; € P | [|up; — 3, < R?}, (8)
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Minimum volume sets (MV-set)

o Assuming that {P;}"; is an i.i.d. sample distributed according to £

@ Assuming that each IP; is unknown.

Examples of three different classes of volume-sets

Gi(R,c) = {B; € P | [|up; — 3, < R?}, (8)

G2(R, ¢) = {Pi € P | [lue, — cll3 < R, Ilupl3, = 1}. (9)

G3(K) = {Pi € P | Bi((|k(X;. ) —cll}y < R*) 21— x;}.  (10)
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First SMDD model

G1(R.c) = {P; € P | ||up, — c[|F < R?}
Given the mean functions {up, }V.; of {P;}¥ ,, the SMDD is:

N
min R% + ) Z &
cEH,RERT ECRN i1

subject to lup, —cl3, <R +&,i=1,...,N
&>0,i=1,...,N.
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Proposition (Dual form)

The dual form of the previously problem is given by:

Problem

N N
max ZO&,’/;(]P),',]P),') — Z Oz,'OéJ'/;(P,',Pj)
i=1

N
acR )

subjectto 0<a; <\, i=1,...,N
N
Za;zl
i=1

where k(P;, P;) = (up;, pp;)2 and c is a Lagrange multiplier vector with
non negative components «;.

N,

.
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Proposition (Representer theorem)

C(‘):Zaiwi, ic{ieT|0<a;<A},

1
where T = {1,2, ..., N}. Furthermore,
o allP;, i € {i € T | a; =0} are inside the MV-set G*.
o AllP;, i € {i € Z|aj = A} are the training errors.

o AllP;, ie {i €Z|0 < aj <A} are the support measures.
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Proposition (Representer theorem)

C('):Zaiﬂpi’ IE{IEI|0<OZIS)\}7

1

where T = {1,2, ..., N}. Furthermore,
o allP;, i € {i € Z|a;=0} are inside the MV-set G*.
o AllP;, i € {i € Z|aj = A} are the training errors.
o AllP;, ie {i €Z|0 < aj <A} are the support measures.

| \

Theorem

Let n be the Lagrange multiplier of the constraint Z,N:1 aj =1, then
R? = —n+ [|c[l3-
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Proposition (Representer theorem)

= aipp, i€{i€T|0<a;<A},
where T = {1,2, ..., N}. Furthermore,
o allP;, i € {i € Z|a;=0} are inside the MV-set G*.
o AllP;, i € {i € Z|aj = A} are the training errors.
o AllP;, ie {i €Z|0 < aj <A} are the support measures.

Theorem

| \

Let n be the Lagrange multiplier of the constraint Z,N:1 aj =1, then
R? = —n+ cl3

If P; is described by this SMDD model, then this must be true:
||:U’Pt_CHH_k]P)t7]P)t 22@/(]?,,]?1- +Zaaj P/,P <R, (11)
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Second SMDD model

@ Mean maps with stationary kernels do not have constant norm

[kpllze = [[Ep[ki (X )]lln < Eefllki (X )] = /el
@ normalize mean maps to lie on a surface of some hypersphere

7 <MP7MQ>’H
k(P;, ;) = , 12
(3. 1) Ve, we) 2 (g, ko) u (12)

@ the injectivity of p: P — H is preserved.

Lo
Com({#(r)} 0 3

it = E,p[b(x)]

Origin

Figure : Figure from ?

Muandet et al "One-class support measure machines for group anomaly detection."
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This could be modeled by the class of volume sets
Go(R,c) = {Pj € P | ||up; — 3 < R?, |luellf, = 1}. (13)

and formulated by the following optimization problem:

Problem (M2)

N ~
max — ajajk P;, P;
m o>
ij=1
subjectto 0< ;<\, i=1,...,N

N
Z a; = 1.
i=1
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Third SMDD model

Estimate the MV-set over the class of the volume-sets given by
Gs(K) = {P; € P | Pi(||k(X;,.) — cl3, <R >1-ki}. (14)

Given the mean functions {up,}.; of {P;}, and {s;},, x; € [0, 1],
the SMDD model is the following chance constrained problem:

Problem

N
min R% 4+ A Z &
cEH,RER ECRN i1

subject to Pi(|k(Xi,.) — c()I3 < RZ+&) > 1w,
gi 2 07

forall i=1,...,N.

v
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@ Markov's inequality.

Ep[|[k(Xi.-) = c()lI%]

2 2
Pi(lk(Xi,.) = c()llf = RT+ &) < RTT G ,  (15)
holds, for all i =1,2,...,N.
@ Trace of the covariance operator: ¥ : H — H,
tr(£%) = Ep[k(X, X)] — k(P, P), (16)

@ This allows to use the following result

Ep[lIk(X,.) = c(.)lI] = tr(Z™) + llup — <()II3-

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 35 / 49



Deterministic form

Given the mean functions {up, } | of {P;}¥ | and {x;}" ., x; € (0,1], the
SMDD model is:

N
min R? + )\ :
ce€H,RER EERN ,2_; ’S'
subject to ||up, — c()I3 < (R? + &)mi — tr(EH),
gi Z 07

foralli=1,...,N
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Proposition (Dual form)

The dual form is given by the following fractional programming problem

Problem (M1)

N
Z/’J:l vy <MPi7 M]P’_,'>"H

N
Dim Qi

N
rg‘]?{g, Zai<upi’/”’ﬂmi>7’[ -
* i=1

N
+) aitr(TH)
i=1

subject to 0< ajk;i <A, i=1,....N
N
Za;/ﬁi =1,
i=1

where (pip,, pp; )3 is computed by l?([P’,-,]P’J-)

A,
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Proposition (Representer theorem)

. Zi O p;
Ve
i i
where T = {1,2, ..., N}. Furthermore,
o allP;, i€ {i € T | aj =0} are inside the MV-set G*.
o AllP;, i € {i € T| ajki = A} are the training errors.

,iE{iGI|O<C¥,‘H,‘§)\}, (17)

o AIP;, ie {i€Z|0< ajrj < A} are the support measures.

Let n be the Lagrange multiplier of the constraint Zf\lz L aik; =1 then
R? = —7.
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Group anomalies could be detected if the term ||up, — c||3, + tr(Z}) > R
is true, where ||up, — c|| is given by

k(Pe,Pe) —2) " k(P Pr) + > ajosk(P,Pj) + tr(ZH)  (18)
i INi
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© Experiments
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Group anomaly detection in astronomical data

The Star KIC 8462852 phenomena

The Most Mysterious Star
in Our Galaxy

Astronomers have spotted a strange mess of objects whiling around a
distant star. Scientists who search for extraterrestral civizations are.
scrambling to get a closer look.

0000000

Inthe , hovering above the Milky Way, there are two
o e 1l fight, and Lyra,
the harp that ,from
word “Iyrie.”
 but

< Telescope, which stared at it for more than four
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Group anomaly detection in astronomical data

The Star KIC 8462852 phenomena

The Most Mysterious Star

in Our Galaxy

Astronomers have spotted a strange mess of objects whiling around a
distant star. Scientists who search for extraterrestral civizations are.

scrambling to get a closer look.

0000000

Inthe Northern hemisphere’s sky, hovering above the Milky Way, there ase two

Planet Hunters X.
KIC 8462852 - Where's the flux? *f

full ight, and Lyra,

the harp that
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Group anomaly detection in astronomical data

The Star KIC 8462852 phenomena

Planet Hunters X.
[ ecievce | KIC8462852 - Where's the flux? *f

The Most Mysterious Star
in Our Galaxy

Astronomers have spotted a strange mess of objects whiling around a
distant star. Sclentists who search for extraterrestiial civlizations are
scrambling to get a closer look.

0000000

Inthe Northern hemisphere’s sky, hovering above the Milky Way, there ase two

constellations—Cygnus the swan, her wings outstretched in full light, and Lyra,

the harp that ,from

word “Iyrie.”

 but

visible to the Kepler Space Telescope, which stared at it for more than four

years, beginning in 2009.

Has the Kepler Space Telescope Discovered
an Alien Megastructure?
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Group anomaly detection in astronomical data

Ay

Jength (Angstroms)

(a) Cluster of galaxies (b) A galaxy. (C) Spectrum of a galaxy.

Pictures from http://www.sdss3.org/.
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Outline

@ Conclusions and further research
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Any questions?
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Point-based group anomaly detection over a Gaussian

mixture distribution dataset

bk o m a

PSSP

Red, blue and magenta boxes: group anomalies. Green and yellow boxes:
non-anomalous groups.
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M4: OCSMM
M5: SVDD

kernel on probability measures: gaussian kernel, v given by the median
heuristic.

@ 200 runs,training set=50 groups, test set = 30 groups (20 group
anomalies).
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Distribution-based group anomaly detection over a Gaussian

mixture distribution dataset
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