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Who am I?

Three papers in local peruvian conferences.

Lorito. A isolated word recognition from scratch, in JAVA. https://github.com/jorjasso
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Who am I?

https://github.com/jorjasso

Speech Miner. Speech recognition system using MFCC, HMM. using HTK

SOM-TSP. SOM neural network to solve the TSP problem in JAVA.

FNN. Neural network for digit classification in JAVA
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Who am I?

Similarity between fuzzy sets using kernels

link between fuzzy systems and kernels

theory of positive definite kernels on fuzzy sets

kernels induced by fuzzy distance

A data description model for set of distributions

https://github.com/jorjasso

Fuzzy kernel hypothesis testing

TSK kernels on fuzzy sets, classification of low quality datasets.

Group anomaly detection using SMDD.
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Introduction

Definition (Anomaly)
An anomaly is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanisma

Figure : Rare starfish found. One in a million!b

a) Hawkins D., Identification of Outliers, Chapman and Hall, 1980.

b) https://twitter.com/gotham3/status/421258659620855809
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Some applications includea:
Fraud detection. i.e., abnormal buying patterns;

Medicine. i.e., Unusual symptoms, abnormal tests;

Sports. i.e., Outstanding players;

Measurement errors. i.e., abnormal values.

Cyber-intrusion detection ;

Industrial damage detection;

Image processing,

Textual anomaly detection

(a) Unusual contraction. (b) Ceramic defectsb . (c) Traffic jam recognition.

a)Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv.
b) https://www.nde-ed.org/

c) https://www.youtube.com/watch?v=DAXUzWnsiQk
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Techniques:
Generative models. i.e., HMM, GMM;

Unsupervised methods. i.e., clustering, distance-based, density based;

Discriminative models. i.e., SVM, neural networks;

Information Theoretic Methods, Geometric methods

Figure : 2D-anomaliesa .

a)Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv.
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Problem
Given a data set of the form

T = {si}Ni=1, (1)

where si = {x(i)
1 , x(i)

2 , . . . , x(i)
Li
} ∼ Pi , and Pi defined on (RD ,B(RD).

Try to detect anomalies or group anomalies from T
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Introduction

Examples of datasets of this form

T = {si}Ni=1, (3)

(a) Cluster of galaxies (b) SIFT. (c) USPS.

a) http://www.sdss3.org/. b) http://www.vlfeat.org. c) Chang-Dong et al. "Multi-Exemplar Affinity Propagation",

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 15 / 49
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Group anomaly

Group of points with unexpected behavior wrt a dataset of group of points.

Point-based group anomalies aggregation of anomalous points

Distributed-based group anomalies anomalous aggregation of
non-anomalous points.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 16 / 49



Previous work

Feature engineering approach
Feature extraction from each groupa,b

Clustering point anomalies

However, they ignore distributed-based group anomalies.
Generative approach

Flexible genre modelsc

Hierarchical probabilistic modelsd

However, procedures rely on parametric assumptions
Discriminative approach

Support measure machinese

Our work

nonparametric, performance depends on the kernel choice.
a Chan et al. "Modeling multiple time series for anomaly detection," in Data Mining, IEEE.
b Keogh et al. "HOT SAX: efficiently finding the most unusual time series subsequence," in Data Mining , IEEE.
c L Xion et al. "Group Anomaly Detection using Flexible Genre Models", NIPS.

d L Xion et al. "Hierarchical Probabilistic Models for Group Anomaly Detection", AISTATS. e Muandet et a.

"One-Class Support Measure Machines for Group Anomaly Detection", UAI.
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RKHS, where the magic happens

Figure : Kernel mappinga

Figure from Shawe-Taylor et al. "Kernel Methods for Pattern Analysis". Cambridge University Press.
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RKHS, where the magic happens

Main ingredient
A real-valued symmetric positive definite kernel k .∑N

i=1,j=1 cicjk(xi , xj) ≥ 0

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 20 / 49



Kernel methods

SVM

kernel PCA

Gaussian process

SVDD

MKL

SMDD

Kernel regression

Kernel two-sample test

kernel spectral clustering

Representer Theorem
f ∗ = argmin

f∈H
Cost

(
(x1, y1, f (x1)), . . . , (xN , yN , f (xN ))) + Ω(‖f ‖) (4)

f ∗(.) =
N∑

i=1
αi k(., xi ) (5)
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Remembering the problem

Detecting group anomalies from the set T = {si}Ni=1.
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Hilbert space embedding for distributions

Framework for embedding probability measures into a RKHS H.

Definition
The embedding of probability measures P ∈ P into H is given by the
mapping

µ : P → H

P 7→ µP = EP[k(X , .)] =

∫
x∈RD

k(x, .)dP(x).

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 23 / 49



Hilbert space embedding for distributions

Properties
if µP(X ) = EP[k(X ,X )] <∞, with k being measurable then µP ∈ H

Reproducing property 〈f , µP〉 = 〈f ,EP[k(X , .)]〉 = EP[f (X )] holds for
all f ∈ H
µP is the representative function of P
if k is characteristic then µ : P → H is injective
The term ‖µP − µemp‖, is bounded, where µemp is a empirical
estimator of µemp
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Kernel on probability measures

The mapping

P × P → R
(P,Q) 7→ 〈P,Q〉P = 〈µP, µQ〉H

defines an inner product on P. the real-valued kernel on P × P, defined by

k̃(P,Q) =〈P,Q〉P = 〈µP, µQ〉H

=

∫
x∈RD

∫
x′∈RD

k(x, x′)dP(x)dQ(x′)
(6)

is positive definite.
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Minimum volume sets (MV-set)

a MV-set is a set satisfying some optimization criteria.

Definition (MV-set for probability measures)

Let (P,A, E) be a probability space, where P is the space of all probability
measures P on (RD ,B(RD)), A is some suitable σ-algebra of P and E is a
probability measure on (P,A). The MV-set is the set

G ∗α = argmin
G∈A

{ρ(G )|E(G ) ≥ α}, (7)

where ρ is a reference measure on A and α ∈ [0, 1]. The MV-set G ∗α,
describes a fraction α of the mass concentration of E .

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 27 / 49



Minimum volume sets (MV-set)

Assuming that {Pi}Ni=1 is an i.i.d. sample distributed according to E
Assuming that each Pi is unknown.

Examples of three different classes of volume-sets

Ĝ1(R, c) = {Pi ∈ P | ‖µPi − c‖2H ≤ R2}, (8)

Ĝ2(R, c) = {Pi ∈ P | ‖µPi − c‖2H ≤ R2, ‖µP‖2H = 1}. (9)

Ĝ3(K) = {Pi ∈ P | Pi (‖k(Xi , .)− c‖2H ≤ R2) ≥ 1− κi}. (10)
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First SMDD model

Ĝ1(R, c) = {Pi ∈ P | ‖µPi − c‖2H ≤ R2}

Given the mean functions {µPi}Ni=1 of {Pi}Ni=1, the SMDD is:

Problem

min
c∈H,R∈R+,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi − c‖2H ≤ R2 + ξi , i = 1, . . . ,N
ξi ≥ 0, i = 1, . . . ,N.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 29 / 49



Proposition (Dual form)
The dual form of the previously problem is given by:

Problem

max
α∈RN

N∑
i=1

αi k̃(Pi ,Pi )−
N∑

i ,j=1

αiαj k̃(Pi ,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . ,N
N∑

i=1

αi = 1

where k̃(Pi ,Pj) = 〈µPi , µPj 〉H and α is a Lagrange multiplier vector with
non negative components αi .

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 30 / 49



Proposition (Representer theorem)

c(.) =
∑

i

αiµPi , i ∈ {i ∈ I | 0 < αi ≤ λ},

where I = {1, 2, . . . ,N}. Furthermore,
all Pi , i ∈ {i ∈ I | αi = 0} are inside the MV-set Ĝ ∗α.
All Pi , i ∈ {i ∈ I | αi = λ} are the training errors.
All Pi , i ∈ {i ∈ I | 0 < αi < λ} are the support measures.

Theorem

Let η be the Lagrange multiplier of the constraint
∑N

i=1 αi = 1, then
R2 = −η + ‖c‖2H.

If Pt is described by this SMDD model, then this must be true:

‖µPt − c‖2H = k̃(Pt ,Pt)− 2
∑

i

αi k̃(Pi ,Pt) +
∑
i ,j

αiαj k̃(Pi ,Pj) ≤ R, (11)
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Second SMDD model

Mean maps with stationary kernels do not have constant norm
‖µP‖H = ‖EP[kI (X ., )]‖H ≤ EP[‖kI (X ., )‖H] =

√
|ε|

normalize mean maps to lie on a surface of some hypersphere

˜̃k(Pi ,Pj) =
〈µP, µQ〉H√

〈µP, µP〉H〈µQ, µQ〉H
, (12)

the injectivity of µ : P → H is preserved.

Figure : Figure from a

Muandet et al "One-class support measure machines for group anomaly detection."

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 32 / 49



This could be modeled by the class of volume sets

Ĝ2(R, c) = {Pi ∈ P | ‖µPi − c‖2H ≤ R2, ‖µP‖2H = 1}. (13)

and formulated by the following optimization problem:

Problem (M2)

max
α∈RN

−
N∑

i ,j=1

αiαj
˜̃k(Pi ,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . ,N
N∑

i=1

αi = 1.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 33 / 49



Third SMDD model

Estimate the MV-set over the class of the volume-sets given by

Ĝ3(K) = {Pi ∈ P | Pi (‖k(Xi , .)− c‖2H ≤ R2) ≥ 1− κi}. (14)

Given the mean functions {µPi}Ni=1 of {Pi}Ni=1, and {κi}Ni=1, κi ∈ [0, 1],
the SMDD model is the following chance constrained problem:

Problem

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to Pi (‖k(Xi , .)− c(.)‖2H ≤ R2 + ξi ) ≥ 1− κi ,

ξi ≥ 0,

for all i = 1, . . . ,N.
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Markov’s inequality.

Pi (‖k(Xi , .)− c(.)‖2H ≥ R2 + ξi ) ≤
EP[‖k(Xi , .)− c(.)‖2H]

R2 + ξi
, (15)

holds, for all i = 1, 2, . . . ,N.
Trace of the covariance operator: ΣH : H → H,

tr(ΣH) = EP[k(X ,X )]− k̃(P,P), (16)

This allows to use the following result

Lemma

EP[‖k(X , .)− c(.)‖2H] = tr(ΣH) + ‖µP − c(.)‖2H.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 35 / 49



Deterministic form

Given the mean functions {µPi}Ni=1 of {Pi}Ni=1 and {κi}Ni=1, κi ∈ (0, 1], the
SMDD model is:

Problem

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi − c(.)‖2H ≤ (R2 + ξi )κi − tr(ΣHi ),

ξi ≥ 0,

for all i = 1, . . . ,N
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Proposition (Dual form)
The dual form is given by the following fractional programming problem

Problem (M1)

max
α∈RN

N∑
i=1

αi 〈µPi , µPi 〉H −
∑N

i ,j=1 αiαj〈µPi , µPj 〉H∑N
i=1 αi

+
N∑

i=1

αi tr(ΣHi )

subject to 0 ≤ αiκi ≤ λ, i = 1, . . . ,N
N∑

i=1

αiκi = 1,

where 〈µPi , µPj 〉H is computed by k̃(Pi ,Pj)
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Proposition (Representer theorem)

c(.) =

∑
i αiµPi∑

i αi
, i ∈ {i ∈ I | 0 < αiκi ≤ λ}, (17)

where I = {1, 2, . . . ,N}. Furthermore,
all Pi , i ∈ {i ∈ I | αi = 0} are inside the MV-set Ĝ ∗α.
All Pi , i ∈ {i ∈ I | αiκi = λ} are the training errors.
All Pi , i ∈ {i ∈ I | 0 < αiκi < λ} are the support measures.

Theorem

Let η be the Lagrange multiplier of the constraint
∑N

i=1 αiκi = 1 then
R2 = −η.
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Group anomalies could be detected if the term ‖µPt − c‖2H + tr(ΣHt ) ≥ R
is true, where ‖µPt − c‖ is given by

k̃(Pt ,Pt)− 2
∑

i

αi k̃(Pi ,Pt) +
∑
i ,j

αiαj k̃(Pi ,Pj) + tr(ΣHt ) (18)
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Group anomaly detection in astronomical data

The Star KIC 8462852 phenomena

From http://www.space.com/
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Group anomaly detection in astronomical data

(a) Cluster of galaxies (b) A galaxy. (c) Spectrum of a galaxy.

Pictures from http://www.sdss3.org/.
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(a) AUC. (b) ACC Non A. (c) ACC Anom. (d) Means.

(e) AUC. (f) ACC Non A. (g) ACC Anom. (h) Means.

(i) AUC. (j) ACC Non A. (k) ACC Anom. (l) Means.

(m) AUC. (n) ACC Non A. (o) ACC Anom. (p) Médias grup.Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 43 / 49
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Conclusions and further research

SMDD is a non parametric kernel method, with promising results in
group anomaly detection task

Performance depends on the kernel choice, and regularization
parameter
More models can be easily induced based on the idea of MV-sets

Further research
Create models for classification, regression and other ML tasks
exploit structural information of groups

References
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description for Group Anomaly Detection 2015,
SIGACM KDD, ODDx3’15.
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description, 2014, Techical Report IME-USP.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 45 / 49



Conclusions and further research

SMDD is a non parametric kernel method, with promising results in
group anomaly detection task
Performance depends on the kernel choice, and regularization
parameter

More models can be easily induced based on the idea of MV-sets

Further research
Create models for classification, regression and other ML tasks
exploit structural information of groups

References
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description for Group Anomaly Detection 2015,
SIGACM KDD, ODDx3’15.
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description, 2014, Techical Report IME-USP.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 45 / 49



Conclusions and further research

SMDD is a non parametric kernel method, with promising results in
group anomaly detection task
Performance depends on the kernel choice, and regularization
parameter
More models can be easily induced based on the idea of MV-sets

Further research
Create models for classification, regression and other ML tasks
exploit structural information of groups

References
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description for Group Anomaly Detection 2015,
SIGACM KDD, ODDx3’15.
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description, 2014, Techical Report IME-USP.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 45 / 49



Conclusions and further research

SMDD is a non parametric kernel method, with promising results in
group anomaly detection task
Performance depends on the kernel choice, and regularization
parameter
More models can be easily induced based on the idea of MV-sets

Further research
Create models for classification, regression and other ML tasks

exploit structural information of groups
References

Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description for Group Anomaly Detection 2015,
SIGACM KDD, ODDx3’15.
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description, 2014, Techical Report IME-USP.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 45 / 49



Conclusions and further research

SMDD is a non parametric kernel method, with promising results in
group anomaly detection task
Performance depends on the kernel choice, and regularization
parameter
More models can be easily induced based on the idea of MV-sets

Further research
Create models for classification, regression and other ML tasks
exploit structural information of groups

References
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description for Group Anomaly Detection 2015,
SIGACM KDD, ODDx3’15.
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description, 2014, Techical Report IME-USP.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 45 / 49



Conclusions and further research

SMDD is a non parametric kernel method, with promising results in
group anomaly detection task
Performance depends on the kernel choice, and regularization
parameter
More models can be easily induced based on the idea of MV-sets

Further research
Create models for classification, regression and other ML tasks
exploit structural information of groups

References
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description for Group Anomaly Detection 2015,
SIGACM KDD, ODDx3’15.
Guevara, Jorge and Canu, Stephane and Hirata Jr, Roberto Support
Measure Data Description, 2014, Techical Report IME-USP.

Guevara 2015 (IME-USP) IBM-Research November 03, 2015. 45 / 49



Any questions?
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Point-based group anomaly detection over a Gaussian
mixture distribution dataset

Red, blue and magenta boxes: group anomalies. Green and yellow boxes:
non-anomalous groups.
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M4: OCSMM
M5: SVDD
kernel on probability measures: gaussian kernel, γ given by the median
heuristic.
200 runs,training set=50 groups, test set = 30 groups (20 group
anomalies).
métricas AUC e ACC

(a) AUC. (b) ACC Non A. (c) ACC Anom. (d) Médias grup.
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Distribution-based group anomaly detection over a Gaussian
mixture distribution dataset

(a) AUC. (b) ACC Non A. (c) ACC Anom. (d) Médias grup.

(e) AUC. (f) ACC Non A. (g) ACC Anom. (h) Médias grup.
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