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Overall picture

how to use the kernel trick for constructing a fuzzy kernel machines
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Overall picture

In this tutorial we are going to construct a support fuzzy-set machine
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Overall picture

This novel approach differs from other fuzzy support machines,
because we are not modifying the machine learning algorithm but
using kernels on fuzzy sets.

All the following approaches modify the SVM algorithm in some sense, but
not the kernel:

Lin, Chun-Fu, and Sheng-De Wang. "Fuzzy support vector machines." IEEE transactions on neural networks
13.2 (2002): 464-471.

Inoue, Takuya, and Shigeo Abe. "Fuzzy support vector machines for pattern classification." IJCNN’01.
International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222). Vol. 2. IEEE,
2001.

Wang, Yongqiao, Shouyang Wang, and Kin Keung Lai. "A new fuzzy support vector machine to evaluate
credit risk." IEEE Transactions on Fuzzy Systems 13.6 (2005): 820-831.

Abe, Shigeo, and Takuya Inoue. "Fuzzy support vector machines for multiclass problems." ESANN. 2002.

etc.
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Overall picture

Our approach differs from other "fuzzy support machines", because
we do not modify the machine learning algorithm, instead we
construct kernels on fuzzy sets.

The kernel trick given by kernels on fuzzy sets can be used for any
kernel method (support vector regression, kernel PCA, Gaussian
process, etc)
for instance, a support fuzzy-set machine is a SVM with kernel on
fuzzy sets. We call it "support fuzzy-set machine" because the
solution (decision function) will depend only by a subset of the
training examples (fuzzy sets).
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Overall picture
Kernel on fuzzy set library (collaboration with Lucas Yau from University of Sao Paulo)
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Kernel methods

Support Vector Machines

min
α∈RN

1

2
α
>Kα− 1>α

subject to α
>y = 0.

0 ≤ αi ≤ λ, i = 1, . . . ,N.

Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297
Figure from Shawe-Taylor, John, and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university
press, 2004.
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Kernel methods

Kernel PCA

Solve Mλα = Kα

subject to α
>Kα = 1.

where the eigen functions are given by V (.) =
∑

i αi k(xi , .)

Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. "Nonlinear component analysis as a kernel
eigenvalue problem." Neural computation 10.5 (1998): 1299-1319.
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Kernel methods

Gaussian process regression
f ∼ GP

(
E[f (X )], k(x, x)

)
= GP

(
m(x), k(x, x)

)
Predictive distribution yi | x∗, x, y ∼ N

(
k(x∗, x)k(x, x)−1y, k(x∗, x∗)− k(x∗, x)k(x, x)−1k(x, x∗)

)
thus, y = f̂ (x∗) ≡ k(x∗, x)k(x, x)−1y =

∑
i αi k(xi , x∗), ,where α = K−1y

Rasmussen, Carl Edward. "Gaussian processes in machine learning." Advanced lectures on machine learning.
Springer, Berlin, Heidelberg, 2004. 63-71.
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Kernel methods

Support Vector Data Description

min
α∈RN

α
>Kα− α

>diag(K)

subject to α
>1 = 0.

0 ≤ αi ≤ λ, i = 1, . . . ,N,

Tax, David MJ, and Robert PW Duin. "Support vector data description." Machine learning 54.1 (2004): 45-66.
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Kernel methods

Radial basis function neural network

f (x) =
L∑

l=1
wl exp(−γ‖x − µk‖

2)

Broomhead, David S., and David Lowe. Radial basis functions, multi-variable functional interpolation and adaptive
networks. No. RSRE-MEMO-4148. Royal Signals and Radar Establishment Malvern (United Kingdom), 1988.
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Kernel methods

SVM

kernel PCA

Gaussian process

SVDD

MKL

SMDD

Kernel regression

Kernel two-sample test

kernel spectral clustering

Representer Theorem
f ∗ = argmin

f∈H
Cost

(
(x1, y1, f (x1)), . . . , (xN , yN , f (xN ))) + Ω(‖f ‖) (1)

f ∗(.) =
N∑
i=1

αi k(., xi ) (2)
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Kernel methods

A kernel matrix is a similarity matrix
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RKHS, where the magic happens

Figure: Kernel mappinga

Figure from Shawe-Taylor et al. "Kernel Methods for Pattern Analysis". Cambridge University Press.
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RKHS, where the magic happens

Main ingredient
A real-valued symmetric positive definite kernel k .∑N

i=1,j=1 cicjk(xi , xj) ≥ 0
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Reproducing Kernel Hilbert Spaces

Definition (Reproducing kernel)

A function

k : X × X → R
(x , y) 7→ k(x , t) (3)

is called a reproducing kernel of the Hilbert space H if and only if:
1 ∀x ∈ X , k(., x) ∈ H
2 ∀x ∈ X , ∀f ∈ H 〈f , k(., x)〉H = f (x)

Reproducing property

∀(x , y) ∈ X × X , k(x , y) = 〈k(., x), k(., y)〉H (4)
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Reproducing Kernel Hilbert Spaces

Definition (Real RKHS)
A Hilbert Space of real valued functions on X , denoted by H, with
reproducing kernel is called a real Reproducing Kernel Hilbert Space or real
RKHS.

Characterization
All the evaluation functionals are continuous on H. :

ex : H → R (5)
f 7→ ex(f ) = f (x) (6)

Berlinet, Alain, and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics.
Springer Science Business Media, 2011.
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Positive Definite Kernel

Lemma

Any reproducing kernel k : X × X → R is a symmetric positive definite
function, that is, it satisfies:

N∑
i=1

N∑
j=1

cicjk(xi , xj) ≥ 0 (7)

∀N ∈ N, ∀ci , cj ∈ R and k(x , y) = k(y , x), ∀x , y ∈ X . The converse is
true.

Consequently
Kernels k are reproducing kernels of some RKHS. The space spanned by
k(x , .) generates a RKHS or a Hilbert space with reproducing kernel k .
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Positive Definite Kernel

If k is a reproducing kernel, then

N∑
i=1

N∑
j=1

cicjk(xi , xj) =
N∑
i=1

N∑
j=1

cicj〈k(., xi ), k(., xj)〉H

= 〈
N∑
i=1

cik(., xi ),
N∑
j=1

cjk(., xj)〉H

= ‖
N∑
i=1

cik(., xi )‖2H

≥ 0

That is
Elements of the RKHS are real-valued functions on X of the form
f (.) =

∑N
i=1 cik(., xi ).
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Examples of reproducing kernels or positive definite kernels

k(x, x′) = (1 + x>x′)2

= (1 + x1x
′
1 + x2x

′
2)2

= (1 + x2
1 x
′2
1 + x2

2 x
′2
2 + 2x1x

′
1 + 2x2x

′
2 + 2x1x

′
1x2x

′
2)

=
〈

(1, x2
1 , x

2
2 ,
√
2x1,
√
2x2 ,

√
2x1x2), (1, x ′21 , x

′2
2 ,
√
2x ′1,
√
2x ′2,
√
2x ′1x

′
2)
〉

Polynomial kernel k(x, x′) = (a + bx>x′)γ
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels

k(x , x ′) = exp
(
− (x − x ′)2)

= exp(−x2) exp(−x ′2)
∞∑
i=0

2ix ix ′i

i !

infinite dimensional

RBF kernel k(x, x′) = exp(−0.5 ∗ γ‖x− x′‖2)
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
The real-valued kernel on P × P, defined by

k̃(P,Q) =〈EP[k(X , .)],EQ[k(X ′, .)]〉H

=

∫
x∈RD

∫
x′∈RD

k(x, x′)dP(x)dQ(x′)
(8)

is positive definite.
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
Mean maps with stationary kernels do not have constant norm
‖µP‖H = ‖EP[kI (X ., )]‖H ≤ EP[‖kI (X ., )‖H] =

√
|ε|

normalize mean maps to lie on a surface of some hypersphere

˜̃k(Pi , Pj ) =
〈µP, µQ〉H√

〈µP, µP〉H〈µQ, µQ〉H
, (9)

the injectivity of µ : P → H is preserved.

Muandet et al "One-class support measure machines for group anomaly detection."
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Positive Definite Kernel

The Matern kernel, widely used in kriging procedures by geostatisticians

Figure from: https://www.ethz.ch/content/specialinterest/baug/institute-ibk/risk-safety-and-
uncertainty/en/research/past-projects/polynomial-chaos-kriging.html

Guevara ,Hirata , Canu , Fuzz IEEE 2019 (Universities Here and There)Support Fuzzy-Set Machines June, 2019 31 / 74



Positive Definite Kernel

The Matern kernel, widely used in kriging procedures by geostatisticians

Figure from: https://www.ethz.ch/content/specialinterest/baug/institute-ibk/risk-safety-and-
uncertainty/en/research/past-projects/polynomial-chaos-kriging.html

Guevara ,Hirata , Canu , Fuzz IEEE 2019 (Universities Here and There)Support Fuzzy-Set Machines June, 2019 31 / 74



Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
Linear kernel k(x , y) = 〈x , y〉 x , y ∈ RD

Polynomial kernel k(x , y) = (〈x , y〉+ 1)D x , y ∈ RD

Gaussian kernel k(x , y) = exp(−‖x − y‖2/σ2) x , y ∈ RD

Probability product kernel k̃(P,Q) =
∫
X P(x)ρQ(x)ρdx

Kernel on probability measures for X ∼ P,X ′ ∼ Q,
k̃(P,Q) = 〈EP[k(X ., )],EQ[k(X ′., )]〉H
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Positive Definite Kernel

Making new kernels from old If k1 and k2 are PD kernels, by closure
properties of PD kernels, also are PD kernels:

1 k1(x , y) + k2(x , y);
2 αk1(x , y), α ∈ R+;
3 k1(x , y)k2(x , y);
4 k(f (x), f (y))

5 exp(k1(x , y));
6 p(k1(x , y)), p is a polynomial with positive coefficients.
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Kernels

Positive definite kernels are
coovariance functions, i.e., k(x , x ′) = E

[
f (x)f (x ′)

]
,

similarity measures,
related to metrics by: k(x , x)− 2k(x , x ′) + k(x ′, x ′)

the main ingredient to define RKHS
very useful in practice in machine learning, i.e., they define gram
matrices Ki ,j = k(xi , xj) used in ML algorithms
defined on non empty sets: That enables its use on non-vectorial
spaces. (sets, graphs, strings, etc)
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Kernels on Fuzzy sets

Material

https://github.com/fuzzy-kernel-machines/fuzzy-kernel-machines

Guevara, Jorge, et.al. "Learning with Kernels on Fuzzy Sets" (Arxiv)
In-preparation

Guevara, Jorge, et.al. "Kernels on Fuzzy Sets: an Overview", Learning
on Distributions, Functions, Graphs and Groups @ NIPS-2017

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity."
Fuzzy Systems (FUZZ-IEEE), 2017.

Guevara, Jorge, et.al. "Fuzzy Set Similarity using a Distance-Based
Kernel on Fuzzy Sets", 2016, Book Chapter, Handbook of Fuzzy Sets
Comparison - Theory, Algorithms and Applications,pages 103-120.

Guevara, Jorge, et.al. "Positive Definite Kernel Functions on Fuzzy
Sets." Fuzzy Systems (FUZZ-IEEE), 2014.

Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy
System with Nonsingleton Fuzzy Input." Fuzzy Systems (FUZZ-IEEE),
2013.
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Kernels on Fuzzy sets

Motivation

study, analysis and understanding of the nature of a research object.
testing (causal) hypotheses
discovering hidden patterns and correlations
postulate theories,
give explanations
make predictions on unobserved cases
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Kernels on Fuzzy sets

Set-valued information

Ontic (conjuctive sets)
set of pixels denoting a region within a image
cluster of galaxies

Epistemic (disjuntive sets)
a set containing the unknown age of a person
an interval containing a non-precise measurement

Couso, Inés, and Didier Dubois. "Statistical reasoning with set-valued information: Ontic vs. epistemic views."
International Journal of Approximate Reasoning 55.7 (2014): 1502-1518.
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Kernels on Fuzzy sets

Fuzzy Sets

We can have both views ontic and epistemic
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Kernels on Fuzzy sets

Fuzzy data
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Kernels on Fuzzy sets

Fuzzy data
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Kernels on Fuzzy sets

Fuzzy data
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Kernels on Fuzzy sets

Motivation

similarity measure between fuzzy sets given by kernels

geometric interpretation of similarity between fuzzy set in RKHS

embedding of fuzzy sets into RKHS

using fuzzy data "as is" in kernel methods

covariance matrix for fuzzy samples
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Fuzzy Set

Fuzzy sets on Ω are denoted by X ,Y ,Z .

The membership function Ω :→ [0, 1] of a fuzzy set is denoted by
X (.).
F(Ω) is the set of all the fuzzy sets on Ω.

Definition (Support of a fuzzy set)
The support of a fuzzy set is the set

supp(X ) = {x ∈ Ω|X (x) > 0}.
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Cross product kernel on fuzzy sets

Definition (Cross product kernel on fuzzy sets)

The cross product kernel on fuzzy sets is a function
k× : F(Ω)×F(Ω)→ R given by:

k×(X ,Y ) =
∑

x∈supp(X ),
y∈supp(Y )

k1 ⊗ k2
(
(x ,X (x)), (y ,Y (y))

)
, (10)

where: k1 : Ω× Ω→ R, k2 : [0, 1]× [0, 1]→ R,

k1 ⊗ k2
(
x ,X (x), y ,Y (y)

)
= k1(x , y) k2(X (x),Y (y)). (11)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

Lemma

If k1 and k2 are real-valued pd kernels, then the cross product kernel on
fuzzy sets is pd.

Corollary

Kernel k× defines a similarity measure for two fuzzy sets X ,Y ∈ F(Ω) as
follows:

k×(X ,Y ) = 〈φX , φY 〉H, (12)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

k1(x , y) k×(X ,Y )

linear
∑

x∈supp(X ),
y∈supp(Y )

xyX (x)Y (y)

polynomial
∑

x∈supp(X ),
y∈supp(Y )

(γ〈x , y〉+ b)βX (x)Y (y)

exponential
∑

x∈supp(X ),
y∈supp(Y )

exp(γ〈x , y〉)X (x)Y (y)

Gaussian
∑

x∈supp(X ),
y∈supp(Y )

exp(−γ‖x − y‖2)X (x)Y (y)

Table: Examples of cross product kernels on fuzzy sets.

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

Example
Let (Ω,A, µ) be a finite measure space. Let k1, k2 be continuous functions with finite integral. The kernel

k×(X , Y ) =∫∫
x∈supp(X ),
y∈supp(Y )

k1 ⊗ k2
(

(x, X (x)), (y, Y (y))
)
dµ(x)dµ(y),

(13)

is a cross product kernel on fuzzy sets.

Example
Replacing the measure µ of the previous example with a probability measure P results in the following cross product
kernel on fuzzy sets:

k×(X , Y ) =∫∫
x∈supp(X ),
y∈supp(Y )

k1 ⊗ k2
(

(x, X (x)), (y, Y (y))
)
dP(x)dP(y),

(14)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

A generalization of k× to deal with a D-tuple of fuzzy sets, i.e., (X1, . . . , XD ) ∈ F(Ω1)× · · · × F(ΩD ) is
implemented by the following kernel:

kπ×
(

(X1, . . . , XD ), (Y1, . . . , YD )
)

=
D∏

d=1
kd×(Xd , Yd ). (15)

If all the kernels kd× are positive definite then kπ× is positive definite by closure properties of kernels. Another
generalization based on addition of positive definite kernels is also possible:

kΣ
×
(

(X1, . . . , XD ), (Y1, . . . , YD )
)

=
D∑

d=1
αi k

d
×(Xd , Yd ). (16)

Kernel kΣ
× is positive definite if only if αi ∈ R+ and all the kD× kernels are positive definite.
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Cross product kernel on fuzzy sets

Properties

k× is a convolution kernel, i.e., it can be derived from
kconv (e, e′) =

∑
~e∈R−1(e),~e′∈R−1(e′)

∏L
l=1 kl(el , e

′
l ),

k× generalize the cross product kernel on sets, i.e., k(A,A′)

k× embeds probability distributions into a RKHS.

fuzzines and radomness modeling (see example when µ = P)

noise resistant under supervised classification experiments on attribute noisy
datasets (see Paper below)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

Example of this kernel using the fuzzy-kernel-machines library (see
notebook 2)
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Cross product kernel on fuzzy sets

Kernel gram matrix example using the fuzzy-kernel-machines library (see
notebook 3)
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The intersection kernel on fuzzy sets

A triangular norm or T-norm is the function T : [0, 1]2 → [0, 1], such that,
for all x , y , z ∈ [0, 1] satisfies:

T1 commutativity: T (x , y) = T (y , x);
T2 associativity: T (x ,T (y , z)) = T (T (x , y), z);
T3 monotonicity: y ≤ z ⇒ T (x , y) ≤ T (x , z);
T4 boundary condition T (x , 1) = x .

a multiple-valued extension
Using n ∈ N, n ≥ 2 and associativity, a multiple-valued extension
Tn : [0, 1]n → [0, 1] of a T-norm T is given by T2 = T and

Tn(x1, x2, . . . , xn) = T (x1,Tn−1(x2, x3, . . . , xn)). (17)

We will use T to denote T or Tn.
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The intersection kernel on fuzzy sets

A semi-ring of sets, S on Ω, is a subset of the power set P(Ω), that is, a
set of sets satisfying:

1 φ ∈ S, φ denotes the empty set;
2 A,B ∈ S, =⇒ A ∩ B ∈ S;
3 for all A,A1 ∈ S and A1 ⊆ A, there exists a sequence of

pairwise disjoint sets A2,A3, . . .AN ⊆ S, such

A =
N⋃
i=1

Ai .

Finite decomposition
Condition 3 is called finite decomposition of A.
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The intersection kernel on fuzzy sets

Definition (Measure)

Let S be a semi-ring and let ρ : S → [0,∞] be a pre-measure, i.e., ρ
satisfy:

1 ρ(φ) = 0;
2 for a finite decomposition of A ∈ S, ρ(A) =

∑N
i=1 ρ(Ai );

by Carathéodory’s extension theorem, ρ is a measure on σ(S), where σ(S)
is the smallest σ-algebra containing S .

Gartner et.al., shows that a kernel k : S ×S → R defined by k(A,A′) = ρ(A∩A′)
is positive definite, where ρ : S → [0,∞] is a measure.

Gartner, Thomas. Kernels for structured data. Vol. 72. World Scientific, 2008.
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The intersection kernel on fuzzy sets

Remark
Notation FS(Ω) stands for the set of all fuzzy sets over Ω whose support
belongs to S, i.e.,

FS(Ω) = {X ⊂ Ω| supp(X ) ∈ S}.

where S is a semi-ring of sets on Ω

Example
If X ∩ Y ∈ FS(Ω) then satisfy (finite decomposition):

supp(X ∩ Y ) =
⋃
i∈I

Ai , Ai ∈ S,

where {A1,A2, . . . ,AN}. are pairwise disjoint sets
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Intersection Kernel on Fuzzy Sets

Example cont.
We can measure supp(X ∩ Y ) =

⋃
i∈I Ai , Ai ∈ S using the measure

ρ : S → [0,∞] as follows:

ρ
(

supp(X ∩ Y )
)

= ρ(
⋃
i∈I

Ai ) =
∑
i∈I

ρ(Ai ),

Adding fuzziness
The idea to include fuzziness is to weight each ρ(Ai ) by a value given by the
contribution of the membership function on all the elements of the set Ai .
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Intersection Kernel on Fuzzy Sets

Definition

The intersection kernel on fuzzy sets is a function:
k∩ : FS(Ω)×FS(Ω)→ R, defined by:

k∩(X ,Y ) =
∑
i∈I

(
X ∩ Y

)
(Ai )ρ(Ai ), (18)

where
(
X ∩ Y

)
(A) ≡

∑
x∈A

(
X ∩ Y

)
(x)

Guevara, Jorge, et.al. "Positive Definite Kernel Functions on Fuzzy Sets." Fuzzy Systems (FUZZ-IEEE), 2014.
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Intersection Kernel on Fuzzy Sets

Kernel k∩ can be implemented via T-norm operators:

k∩(X,Y) =
∑
i∈I

(
X ∩ Y

)
(Ai )ρ(Ai )

=
∑
i∈I

∑
x∈Ai

(
X ∩ Y

)
(x)ρ(Ai )

=
∑
i∈I

∑
x∈Ai

T (X (x),Y (x))ρ(Ai )
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Intersection Kernel on Fuzzy Sets

Some kernel examples for different T-norm operators Examples
Kernel k∩ T-norm

k∩_ min(X ,Y ) =
∑

i∈I
∑

x∈Ai
min(X (x),Y (x))ρ(A) minimum

k∩_pro(X ,Y ) =
∑

i∈I
∑

x∈Ai
X (x)Y (x)ρ(A) product

k∩_Łuk(X ,Y ) =
∑

i∈I
∑

x∈Ai
max(X (x) + Y (x)− 1, 0)ρ(A) Łukasiewicz

k∩_Dra(X ,Y ) =
∑

i∈I
∑

x∈Ai
f (X (x),Y (x))ρ(A) Drastic

where f is defined as

f (X (x),Y (x)) =


X (x), if Y (x) = 1
Y (x), if X (x) = 1

0, otherwise
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Intersection Kernel on Fuzzy Sets

Lemma
kmin(X ,Y ) =

∑
i∈I
∑

x∈Ai
min(µX (x), µY (x))ρ(Ai )

is positive definite

Lemma
kP(X ,Y )=

∑
i∈I
∑

x∈Ai
µX (x)µY (x)ρ(Ai )

is positive definite.
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The non-singleton kernel on fuzzy sets

Definition

This kernel is a function knsk : F(Ω)×F(Ω)→ [0, 1] defined by:

knsk(X ,Y ) = sup
x∈Ω

(
X ∩ Y

)
(x)

= sup
x∈Ω

(
T
(
X (x),Y (x)

) )
,

where sup is the supremum.

Derived from non-singleton fuzzy systems.
Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."
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The non-singleton kernel on fuzzy sets

Examples Given X = (X1, . . . ,Xd , . . . ,XD) and
Y = (Y1, . . . ,Xd , . . . ,YD), such that: Xd(.) = exp

(
−1

2
(.−md )2

σ2d

)
, where,

md ∈ R amd σd ∈ R+, then, the following kernel

knsk(X ,Y ) =
D∏

d=1

exp

(
−1
2

(md −m′d)2

σ2
d + (σ′d)2

)
, (19)

is a positive definite kernel.
Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."
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The non-singleton kernel on fuzzy sets

Examples Given X = (X1, . . . ,Xd , . . . ,XD) and
Y = (Y1, . . . ,Xd , . . . ,YD), such that: Xd(.) = exp

(
−1

2
(.−md )2

σ2d

)
, where,

md ∈ R amd σd ∈ R+, then, the following kernel

kγnsk(X ,Y ) =
D∏

d=1

exp

(
−1
2

(md −m′d)2

σ2
d + (σ′d)2 + γ

)
, (20)

is a positive definite kernel.
Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."
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Distance-based kernels on fuzzy sets

Based on the concept of distance substitution kernels. Examples Kernel
KD(X ,X ′) = exp(−λD(X ,X ′)2),is PD when we use the following metric

on fuzzy sets: D(X ,X ′) =

∑
x∈Ω |X (x)− X ′(x)|∑
x∈Ω |X (x) + X ′(x)|

.

Guevara, Jorge, et.al. "Fuzzy Set Similarity using a Distance-Based Kernel on Fuzzy Sets", 2016, Book Chapter,
Handbook of Fuzzy Sets Comparison - Theory, Algorithms and Applications,pages 103-120
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Fuzzy kernel machines

Definition (Support fuzzy-set machines)
Kernels machines with kernel gram matrix constructed by kernels on fuzzy
sets.

Support fuzzy-set machines learn f =
∑

i αik(X , ) using the SVM
algorithm

Definition (Support fuzzy-sets)
Is the set given by all the fuzzy sets used in a kernel machine such the
correspondent αi > 0.
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Support fuzzy-set machines

Support fuzzy-set machine example using the fuzzy-kernel-machines
library (see notebook 4 and 5)
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Support fuzzy-set machines

Practical example on supervised classification on noisy data:

Table: Summary of the PIMA dataset

Dataset %Noise

pima-5an-nn 5%
pima-10an-nn 10%
pima-15an-nn 15%
pima-20an-nn 20%
pima-5an-nc 5%
pima-10an-nc 10%
pima-15an-nc 15%
pima-20an-nc 20%

Pima, 768 observations, 35/65 class rate
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Support fuzzy-set machines
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Support fuzzy-set machines
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Support fuzzy-set machines

Kernels used on the experiment

k1(x, y) k×(X , Y )

Fuzzy linear
∑

x∈supp(X ),
y∈supp(Y )

xyX (x)Y (y)

Fuzzy exp
∑

x∈supp(X ),
y∈supp(Y )

exp(γ〈x, y〉)X (x)Y (y)

Fuzzy Gaussian
∑

x∈supp(X ),
y∈supp(Y )

exp(−γ‖x − y‖2)X (x)Y (y)

Table
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Support fuzzy-set machines
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Conclusions and next steps

similarity measure between fuzzy sets given by kernels

geometric interpretation of similarity between fuzzy set in RKHS

embedding of fuzzy sets into RKHS

using fuzzy data "as is" in kernel methods

covariance matrix for fuzzy samples
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