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Overall picture

@ In this tutorial we are going to construct a support fuzzy-set machine
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Overall picture

@ This novel approach differs from other fuzzy support machines,
because we are not modifying the machine learning algorithm but
using kernels on fuzzy sets.

All the following approaches modify the SVM algorithm in some sense, but
not the kernel:

@ Lin, Chun-Fu, and Sheng-De Wang. "Fuzzy support vector machines." |IEEE transactions on neural networks
13.2 (2002): 464-471.

@ Inoue, Takuya, and Shigeo Abe. "Fuzzy support vector machines for pattern classification." IJCNN'01.
International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222). Vol. 2. IEEE,
2001.

@ Wang, Yonggiao, Shouyang Wang, and Kin Keung Lai. "A new fuzzy support vector machine to evaluate
credit risk." IEEE Transactions on Fuzzy Systems 13.6 (2005): 820-831.

@ Abe, Shigeo, and Takuya Inoue. "Fuzzy support vector machines for multiclass problems." ESANN. 2002.

@ etc.
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Overall picture

@ OQur approach differs from other "fuzzy support machines”, because
we do not modify the machine learning algorithm, instead we
construct kernels on fuzzy sets.
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Overall picture

@ OQur approach differs from other "fuzzy support machines”, because
we do not modify the machine learning algorithm, instead we
construct kernels on fuzzy sets.

@ The kernel trick given by kernels on fuzzy sets can be used for any
kernel method (support vector regression, kernel PCA, Gaussian
process, etc)

e for instance, a support fuzzy-set machine is a SVM with kernel on
fuzzy sets. We call it "support fuzzy-set machine" because the
solution (decision function) will depend only by a subset of the
training examples (fuzzy sets).
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Overall picture

Kernel on fuzzy set library (collaboration with Lucas Yau from University of Sao Paulo)

I fuzzy-kernel-machines / fuzzy-kernel-machines @uUnwatch~ 2 kStar 0  YFork 0
© Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights

No description, website, or topics provided.

© 33 commits ¥ 1branch © 0 releases &8 2 contributors B mIT

Branch: master v || New pull request Create new file  Upload files | Find File | [[IENETEFTET]

B4 Ruhaker Merge pull request #9 from Ruhaker/modules - Latest commit 64ad9ad 2 days ago
W _pycache__ Several superficial modifications on code 15 days ago
™ kernelfuzzy Notebook refining 2 days ago
™ notebooks Notebook refining 2 days ago
W tests Manual linting & merge, import corrections and refactoration 3 days ago
™ utils Notebook refining 2 days ago
E) LICENSE updating everithing 16 days ago
) README.md Refactoring and notebook adjustments 9 days ago
2 main.py Manual linting & merge, import corrections and refactoration 3 days ago
E) requirements.txt Several additions and refactoring 10 days ago
5 setup.py Add co-author names into setup.py 9 days ago
README.md I

Kernels on fuzzy sets library

Synopsis

This project contains implementations of kernels on fuzzy sets. We will include examples of the use of those
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Introduction

Data representation

Images

Vectors

Conditional random fields
Structured data

logical predicates

Graphs

Distributions
Uncertain data

Probability measures

Fuzzy sets
Granular data

Fuzzy sets

Granular representations
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Similarity measures

A real valued function that
quantifies the similarity between
two objects

Many of them:
Inner products (Kernels)
Cosine similarity
Fuzzy similarity measures

etc
Property

Inverse of distance metrics (in
some sense)
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Outline

9 Kernel Machines
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Kernel methods

K f(x)=Z0uK(xi,X)

DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION

>
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Kernel methods

K f(x)=Z0uK(xi,X)

DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION

>

Support Vector Machines

min Calka-1Ta
ackN

subject to aTy:O.
0<a; <A, i=1,...,N.

Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297
Figure from Shawe-Taylor, John, and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university
press, 2004.
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Kernel methods

K f(x)=ZouK(xi,x)

DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION

>

Kernel PCA

Solve Mla = Ka

subject to a Ko =1.
where the eigen functions are given by V(.) = 37 a;k(x;, )

Schélkopf, Bernhard, Alexander Smola, and Klaus-Robert Miiller. "Nonlinear component analysis as a kernel
eigenvalue problem." Neural computation 10.5 (1998): 1299-1319.
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Kernel methods

f(x)=Z0iK(xi,X)

DATA

KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION

>

Gaussian process regression
@  ~ GP(EIF(X)], k(x,x)) = GP(m(x), k(x, x))
@ Predictive distribution y; | xx, X,y ~ N (k(xs, x)k(x, x) T2y, k(xa, x5) — k(xs, x)k(x, x) T2k(x, X))
@ thus, y = f(xi) = k(xs, x)k(x, x) 7 y = 32, ajk(xj, x«), ,where a =K1y

Rasmussen, Carl Edward. "Gaussian processes in machine learning." Advanced lectures on machine learning.
Springer, Berlin, Heidelberg, 2004. 63-71.

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 16 / 74



Kernel methods

K f(x)=ZonK(xi,x)

DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION
c o

Support Vector Data Description

min o Ka — osziag(K)
acrN
subject to a'l=o0.

0<oa; <X, i=1,...,N,

Tax, David MJ, and Robert PW Duin. "Support vector data description." Machine learning 54.1 (2004): 45-66

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 17 / 74




Kernel methods

K f(x)=ZonK(xi,x)

DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION

>
Radial basis function neural network
L 2
f(x) = D wiexp(—lIx — uill®)
=1
Broomhead, David S., and David Lowe. Radial basis functions, multi-variable functional interpolation and adaptive

networks. No. RSRE-MEMO-4148. Royal Signals and Radar Establishment Malvern (United Kingdom), 1988.
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Kernel methods

K > £(x)=ZouK(xi,x)
DATA KERNEL FUNCTION KERNEL MATRIX PA ALGORITHM PATTERN FUNCTION
>
@ svMm @ svDD @ Kernel regression
@ kernel PCA @ MKL @ Kernel two-sample test
@ Gaussian process @ sMDD @ kernel spectral clustering

Representer Theorem

% = argmin Cost((x1, y1, f(x1)), - - -, (xv, yn» F(xw))) + Q(IIF1]) (1)
fEH

N
() = 3 aik(. x) @)

i=1
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Kernel methods

A kernel matrix is a similarity matrix

raw data
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RKHS, where the magic happens

Figure: Kernel mapping?

Figure from Shawe-Taylor et al. "Kernel Methods for Pattern Analysis". Cambridge University Press.
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RKHS, where the magic happens

Main ingredient

@ A real-valued symmetric positive definite kernel k.
N
Zi:l,j:l cicik(xi,x;) >0

X —=H
x> k(.,x)

i /k(\)

k:XxX—>R

Ve e X, k(.,z) eH
Vee X, VfeH (f, k(.
(k(.,

i
Ve, o' € X k(z,z') = @),
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Reproducing Kernel Hilbert Spaces

Definition (Reproducing kernel)

A function

k:XxX — R
(x,y) = k(xt) (3)
is called a reproducing kernel of the Hilbert space H if and only if:
Q Vxe X, k(,x)eH
Q@ Vxe X, VfeH (fk(.,x)n="Ff(x)
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Reproducing Kernel Hilbert Spaces

Definition (Reproducing kernel)
A function
k:XxX — R
(xy) = k(xt) (3)

is called a reproducing kernel of the Hilbert space H if and only if:
Q Vxe X, k(.,x) eH
Q@ Vxe X, VfeH (f,k(.,x))n =f(x)

Reproducing property

V(x,y) € X x X, k(x,y) = (k(-,x), k(-, y))# (4)
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Reproducing Kernel Hilbert Spaces

Definition (Real RKHS)

A Hilbert Space of real valued functions on X, denoted by H, with

reproducing kernel is called a real Reproducing Kernel Hilbert Space or real
RKHS.
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Reproducing Kernel Hilbert Spaces

Definition (Real RKHS)

A Hilbert Space of real valued functions on X, denoted by H, with

reproducing kernel is called a real Reproducing Kernel Hilbert Space or real
RKHS.

Characterization

All the evaluation functionals are continuous on H. :

ex:H — R (5)
fo elf)=f(x) (6)

v

Berlinet, Alain, and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics.
Springer Science Business Media, 2011.

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 24 / 74



Positive Definite Kernel

Any reproducing kernel k : X x X — R is a symmetric positive definite
function, that is, it satisfies:

IIMZ

N
Z k(xi,x;) >0 (7)

VN €N, V¢, ¢; € R and k(x,y) = k(y,x), Vx,y € X. The converse is
true.
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Positive Definite Kernel

Any reproducing kernel k : X x X — R is a symmetric positive definite
function, that is, it satisfies:

N
Z k(xi,xj) >0 (7)

IIMZ

VN € N, Vi, ¢ € R and k(x,y) = k(y, x), Vx,y € X. The converse is
true.

Consequently

Kernels k are reproducing kernels of some RKHS. The space spanned by
k(x,.) generates a RKHS or a Hilbert space with reproducing kernel k.
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Positive Definite Kernel

If k is a reproducing kernel, then
N N N N
ZZC,-CJ-/((X;,XJ-) = ZZC/CJ 5 Xi)s k(%))

i=1 j=1 i=1 j=1

1

N

= <Z C,'k(.,Xi),ZCjk('a)g»H
j=1

I'_

= ||chk ) Xi ||7-L

0

A%
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Positive Definite Kernel

If k is a reproducing kernel, then

N N N N
ZZC,’C:,'/((X,',X_,’) = ZZC/CJ 5 Xi)s k(%))

i=1 j=1 i=1j=1
N
= O cik(. x,-),ZcJ-k(.,xJ-»H
=l =
N

= ||chk ) Xi ||7-L

> 0

That is

Elements of the RKHS are real-valued functions on X of the form
F(.) = Ly cik( ).

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 26 / 74
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Polynomial kernel k(x,x") = (a+ bx"x)”
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Examples of reproducing kernels or positive definite kernels

k(x,x') = (1+x"x)?
(14 x1x] + x2x5)?
(14 X2X% 4 X3 X524+ 2x1X] + 2x0x5 4 2X1 X, X0X5)

<(1,X]?7X227 \/§X1, \/§X2 ) \/§X1X2)a (laX{2,X£27 \/EXL \/§X£7 \/§X£X£)>

Polynomial kernel k(x,x") = (a+ bx"x')”
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels

k(x,x') = exp(—(x— x’)2)
0 oiyiyli
= exp(—x?)exp(—x"?) Z H
i=0

infinite dimensional
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels

k(x,x') = exp(—(x— x’)2)
0 oiyiyli
= exp(—x?)exp(—x"?) Z H
i=0

infinite dimensional
RBF kernel k(x,x") = exp(—0.5 * 7||x — x'||2)
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
The real-valued kernel on P x P, defined by

k(P,Q) =(Bp[k(X, )], Egk(X', ))n
/]RD/e]RD x,x")dP(x)dQ(x")

is positive definite.
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
@ Mean maps with stationary kernels do not have constant norm
lepllze = 1Eplk (XMl < Ep(llk (X)) lIn] = Vel
@ normalize mean maps to lie on a surface of some hypersphere

e, B)) = CHps PQ)H 7 ©)

(e, pp)H (BQ: HQ)H

@ the injectivity of i : P — H is preserved.

Muandet et al "One-class support measure machines for group anomaly detection."
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Positive Definite Kernel

Vavr i)l //Buryp-i
s DO (G

ku=p+1/2(7‘) = €xp (—
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Positive Definite Kernel

@r) (p+1) Z (p+z (\/gr)l’—l

ku=pr1/2(r) = exp (_ ¢ )T2p+1) & ¢

The Matern kernel, widely used in kriging procedures by geostatisticians

Figure from: https://www.ethz.ch/content/specialinterest/baug/institute-ibk/risk-safety-and-
uncertainty/en/research/past-projects/polynomial-chaos-kriging.html
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
o Linear kernel k(x,y) = (x,y) x,y € RP
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
o Linear kernel k(x,y) = (x,y) x,y € RP
o Polynomial kernel k(x,y) = ({x,y) +1)P x,y € RP
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
o Linear kernel k(x,y) = (x,y) x,y € RP
o Polynomial kernel k(x,y) = ({x,y) +1)P x,y € RP
o Gaussian kernel k(x,y) = exp(—||x — y||?/0?) x,y € RP
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
o Linear kernel k(x,y) = (x,y) x,y € RP
o Polynomial kernel k(x,y) = ({x,y) +1)P x,y € RP
o Gaussian kernel k(x,y) = exp(—||x — y|!2/02) X y €RP
o Probability product kernel k(P,Q) = L5 B( x)Pdx
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Positive Definite Kernel

Examples of reproducing kernels or positive definite kernels
o Linear kernel k(x,y) = (x,y) x,y € RP
o Polynomial kernel k(x,y) = ({x,y) +1)P x,y € RP
o Gaussian kernel k(x,y) = exp(—||x — y|!2/02) X y €RP
o Probability product kernel k(P,Q) = L5 B( x)Pdx

° t(ernel on probability measures for X ~ PP, X’ Q,
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Positive Definite Kernel

Making new kernels from old If k; and ky are PD kernels, by closure
properties of PD kernels, also are PD kernels:

Q ki(x,y) + ka(x, y);

Q aki(x,y), a€RT;

@ ki(x,y)ka(x,y);

Q k(f(x).f(y))

Q exp(ki(x,y));

O p(ki(x,y)), pis a polynomial with positive coefficients.
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Kernels

Positive definite kernels are

e coovariance functions, i.e., k(x,x") = E[f(x)f(xX)],
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Kernels

Positive definite kernels are
e coovariance functions, i.e., k(x,x") = E[f(x)f(xX)],

@ similarity measures,
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Kernels

Positive definite kernels are
e coovariance functions, i.e., k(x,x") = E[f(x)f(xX)],
@ similarity measures,
o related to metrics by: k(x,x) — 2k(x,x") + k(x',x)
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Kernels

Positive definite kernels are
e coovariance functions, i.e., k(x,x") = E[f(x)f(xX)],
@ similarity measures,
o related to metrics by: k(x,x) — 2k(x,x") + k(x',x)
@ the main ingredient to define RKHS
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Kernels

Positive definite kernels are

coovariance functions, i.e., k(x,x') = E[f(x)f(x")],
similarity measures,

related to metrics by: k(x,x) — 2k(x, x") + k(x',x)
the main ingredient to define RKHS

very useful in practice in machine learning, i.e., they define gram
matrices K;; = k(x;,x;) used in ML algorithms
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Kernels

Positive definite kernels are

coovariance functions, i.e., k(x,x') = E[f(x)f(x")],

similarity measures,

related to metrics by: k(x,x) — 2k(x, x") + k(x',x)

the main ingredient to define RKHS

very useful in practice in machine learning, i.e., they define gram
matrices K;; = k(x;,x;) used in ML algorithms

defined on non empty sets: That enables its use on non-vectorial
spaces. (sets, graphs, strings, etc)
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Outline

© Kernels on Fuzzy sets
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Kernels on Fuzzy sets

Material

https://github.com/fuzzy-kernel-machines/fuzzy-kernel-machines

Guevara, Jorge, et.al. "Learning with Kernels on Fuzzy Sets" (Arxiv)
In-preparation

Guevara, Jorge, et.al. "Kernels on Fuzzy Sets: an Overview", Learning
on Distributions, Functions, Graphs and Groups @ NIPS-2017

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity."
Fuzzy Systems (FUZZ-IEEE), 2017.

Guevara, Jorge, et.al. "Fuzzy Set Similarity using a Distance-Based
Kernel on Fuzzy Sets", 2016, Book Chapter, Handbook of Fuzzy Sets
Comparison - Theory, Algorithms and Applications,pages 103-120.

Guevara, Jorge, et.al. "Positive Definite Kernel Functions on Fuzzy
Sets." Fuzzy Systems (FUZZ-IEEE), 2014.

Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy
System with Nonsingleton Fuzzy Input." Fuzzy Systems (FUZZ-IEEE),
2013.
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Kernels on Fuzzy sets

Motivation
Phenomena
—)
Data set
@ study, analysis and understanding of the nature of a research object.
o testing (causal) hypotheses
@ discovering hidden patterns and correlations
@ postulate theories,
@ give explanations
@ make predictions on unobserved cases
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Kernels on Fuzzy sets

Set-valued information

@ Ontic (conjuctive sets)

e set of pixels denoting a region within a image
o cluster of galaxies

e Epistemic (disjuntive sets)
e a set containing the unknown age of a person
e an interval containing a non-precise measurement

Couso, Inés, and Didier Dubois. "Statistical reasoning with set-valued information: Ontic vs. epistemic views."
International Journal of Approximate Reasoning 55.7 (2014): 1502-1518.
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Kernels on Fuzzy sets

Fuzzy Sets

X:Q-L

We can have both views ontic and epistemic
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Kernels on Fuzzy sets

Fuzzy data
Var1 |Var2 |Var3 |Var4 |Var5 [Var6 [MD
234 345 34 654 345 56 0.5

56 45 546 345 SASEN EAS il
345 345 767 564 435 456 0.3
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Kernels on Fuzzy sets

Fuzzy data
Var 1 |Var2 | Var3 | Var4 | [MD1 MD2 MD3 MD4.
234 345 34 654 0.3 0.5 1 0.4
56 45 546 345 0.6 0.7 04 1
345 345 767 564 0 0.3 0.1 0.9
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Kernels on Fuzzy sets

Fuzzy data

X! X} e X} e
x¢ X3 X3 X; Xé
X3 ¢ X3 X X3
Xt X3 X3 xi X3

X:Q — [0,1]
x = X(x).
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Kernels on Fuzzy sets

Motivation

@ similarity measure between fuzzy sets given by kernels
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Kernels on Fuzzy sets

Motivation
@ similarity measure between fuzzy sets given by kernels

@ geometric interpretation of similarity between fuzzy set in RKHS
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Kernels on Fuzzy sets

Motivation
@ similarity measure between fuzzy sets given by kernels
@ geometric interpretation of similarity between fuzzy set in RKHS
@ embedding of fuzzy sets into RKHS
@ using fuzzy data "as is" in kernel methods

@ covariance matrix for fuzzy samples
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Fuzzy Set

@ Fuzzy sets on Q are denoted by X, Y, Z.
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@ Fuzzy sets on Q are denoted by X, Y, Z.

@ The membership function Q :— [0, 1] of a fuzzy set is denoted by
X(.).

o F(Q) is the set of all the fuzzy sets on Q.

Definition (Support of a fuzzy set)

The support of a fuzzy set is the set

supp(X) = {x € Q| X(x) > 0}.
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Cross product kernel on fuzzy sets

Definition (Cross product kernel on fuzzy sets)

The cross product kernel on fuzzy sets is a function
ky : F(Q2) x F(Q2) — R given by:

kX(Xa Y) = Z kl ® k2((X?X(X))7(y7 Y(y)))a (10)
xesupp(X),
yé€supp(Y)

where: ki : Q2 x Q — R, ky : [0,1] x [0,1] — R,

ki1 @ ka(x, X(x),y, Y(y)) = ki(x, y) ka(X(x), Y(y)). (11)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

If ky and ko are real-valued pd kernels, then the cross product kernel on
fuzzy sets is pd.
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Cross product kernel on fuzzy sets

If ky and ko are real-valued pd kernels, then the cross product kernel on
fuzzy sets is pd.

Kernel ky defines a similarity measure for two fuzzy sets X, Y € F(Q) as
follows:

kx (X’ Y) = <¢X; ¢Y>’H7 (12)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

ki(x,y) k«(X,Y)

linear Z xyX(x)Y(y)
x€supp(X),
y€supp(Y)

polynomial Z (v(x,y) + b)PX(x)Y(y)

x€supp(X),
y€supp(Y)

exponential Z exp(7(x, y))X(x)Y(y)

xesupp(X),
y€esupp(Y)

Gaussian Z exp(—llx — YH2)X(X)Y(Y)

xesupp(X),
y€esupp(Y)

Table: Examples of cross product kernels on fuzzy sets.

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

Let (Q, A, i) be a finite measure space. Let kq, ko be continuous functions with finite integral. The kernel
Ky (X, Y) =
/ /xeSupp (x), Kt ® k2 (6 X(x)), (v, Y () dp(x)dily),
yEsupp(Y)

(13)

is a cross product kernel on fuzzy sets.

| \

Example

Replacing the measure |1 of the previous example with a probability measure P results in the following cross product
kernel on fuzzy sets:

ke (X, Y) =

[ ecapsisg, o ® ka (6, X, (5, YD) (),

y€Esupp(Y

(14) |

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy sets

A generalization of ky to deal with a D-tuple of fuzzy sets, i.e., (X1,...,Xp) € F(Q1) X --- X F(Qp) is
implemented by the following kernel:

D
KE((Xa, -3 Xp)y (Ya, -, YD) = [] k& (Xa, Ya)- (15)
d=1

If all the kernels k‘>1< are positive definite then k; is positive definite by closure properties of kernels. Another
generalization based on addition of positive definite kernels is also possible:

D
K ((Xas -, Xp), (Y2, -, YD) = D ik (Xg, Ya). (16)
d=1

Kernel k§ is positive definite if only if «; € RT and all the kg kernels are positive definite.

Guevar:

,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 49 / 74



Cross product kernel on fuzzy sets

Properties

@ ky is a convolution kernel, i.e., it can be derived from
L
keonv(e,€') = Eé‘ER—l(e),é’eR—1(e’) [I—1 k(e €),
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Cross product kernel on fuzzy sets

Properties
@ ky is a convolution kernel, i.e., it can be derived from
kean (&, ') = Saepa(e).¢ er-(en [ kiler- €f),
@ ky generalize the cross product kernel on sets, i.e., k(A, A")
@ ky embeds probability distributions into a RKHS.
@ fuzzines and radomness modeling (see example when 1 = P)

@ noise resistant under supervised classification experiments on attribute noisy
datasets (see Paper below)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.
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Cross product kernel on fuzzy set

Example of this kernel using the fuzzy-kernel-machines library (see
notebook 2)

from kernelfuzzy.fuzzyset import FuzzySet
from kernelfuzzy.memberships import gaussmf

elements = np.random.uniform(0, 100, 2)
X = FuzzySet(elements=elements, mf=gaussmf, params=[np.mean(elements), np.std(elements)])

elements = np.random.uniform(0, 100, 2)
Y = FuzzySet(elements= elements, mf-gaussmf, params=[np.mean(elements), np.std(elements)])
", X.get_pair())
, Y.get_pair())

print("Fuzzy set:
print("Fuzzy set:

Fuzzy set: [(3.5582410565239586, 0.36787944117144233), (42.5806658890677, 0.36787944117144245)]
Fuzzy set: [(70.57530755417343, 0.3678794411714424), (20.89244684919256, 0.36787944117144217))

Cross-Product kernels: linear kernel with RBF kernel
This example calculates the Cross-Product of different kernels: the RBF with a linear kernel

#cross product kernel with RBF kernel and linear kernels
from sklearn.metrics.pairwise import rbf kernel

print (kernels.cross_product_kernel(X, Y, rbf_kernel, 0.05, kernels.linear kernel, ''))
print (kernels.cross_product_kernel(X, Y, rbf_kernel, 0.5, kernels.linear_kernel, ''))
print (kernels.cross_product_kernel(X, Y, rbf_kernel, 5.0, kernels.linear kernel, ''))

4.043661711650557e-08
7.658805252340087e-67
0.0

Support Fuzzy-Set Machines June, 2019

Hirata , Canu , Fuzz IEEE 20




Cross product kernel on fuzzy sets

Kernel gram matrix example using the fuzzy-kernel-machines library (see
notebook 3)

Kernel Gram Matrix: RBF kernel and linear kernel

The Gram Matrix kernels are created from a fuzzy dataset. Each Gram Matrix is estimated via the
cross-product kernel on the fuzzy sets, with a RBF kernel for the elements and a linear kernel for the
membership degrees

In [6]: from sklearn.metrics.pairwise unpcrt rbf_kernel
import matplotlib.pyplot as plt

# fuzzy dataset
fuzzy_dataset = FuzzyData.create toy fuzzy dataset(num_rows=50, num_cols=2
)

kernel bandwidth=[0.05, 0.5, 5, 50]

# plotting
fig, axn = plt.subplots(2, 2, figsize=(10,10))
for i, ax in enumerate(axn.flat):
K = gram matrix_cross_product_kernel(fuzzy dataset, fuzzy dataset, rbf
_kernel, kernel bandwidth([i], linear_ kernel, '')
sns.heatmap(K, ax=ax)

fig.tight_layout()

b oo snwr e 96 30
b oD B BT HNBBL 96 30
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The intersection kernel on fuzzy sets

A triangular norm or T-norm is the function T : [0,1]2 — [0, 1], such that,
for all x,y, z € [0, 1] satisfies:

T1 commutativity: T(x,y) = T(y, x);

T2 associativity: T(x, T(y,z)) = T(T(x,y),z);
T3 monotonicity: y <z = T(x,y) < T(x,z);
T4 boundary condition T(x,1) = x.
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The intersection kernel on fuzzy sets

A triangular norm or T-norm is the function T : [0,1]2 — [0, 1], such that,
for all x,y, z € [0, 1] satisfies:

T1 commutativity: T(x,y) = T(y, x);

T2 associativity: T(x, T(y,z)) = T(T(x,y),z);
T3 monotonicity: y < z= T(x,y) < T(x, 2);
T4 boundary condition T(x,1) = x.

a multiple-valued extension

Using n € N, n > 2 and associativity, a multiple-valued extension
T, :[0,1]" — [0,1] of a T-norm T is given by T> = T and

To(x1, %2,y xn) = T(x1, Th—1(x2, X3, ..., Xn))- (17)

We will use T to denote T or T,.
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The intersection kernel on fuzzy sets

A semi-ring of sets, S on (, is a subset of the power set P(f2), that is, a
set of sets satisfying:

1 ¢ € S, ¢ denotes the empty set;
2 ABeS, — ANBEeS;

3 for all A;A; € S and A; C A, there exists a sequence of
pairwise disjoint sets Ay, As,... Ay C S, such
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The intersection kernel on fuzzy sets

A semi-ring of sets, S on (, is a subset of the power set P(f2), that is, a
set of sets satisfying:

1 ¢ € S, ¢ denotes the empty set;
2 ABeS, — ANBEeS;

3 for all A;A; € S and A; C A, there exists a sequence of
pairwise disjoint sets Ay, As,... Ay C S, such

Finite decomposition

Condition 3 is called finite decomposition of A.
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The intersection kernel on fuzzy sets

Definition (Measure)

Let S be a semi-ring and let p : S — [0, 00| be a pre-measure, i.e., p
satisfy:

1 p(¢) =0;

2 for a finite decomposition of A € S, p(A) = ZlNzl p(Ai);
by Carathéodory's extension theorem, p is a measure on o(S), where o(S)
is the smallest o-algebra containing S.

Gartner et.al., shows that a kernel k: S x S — R defined by k(A, A’) = p(ANA’)
is positive definite, where p : § — [0, 00] is a measure.

v

Gartner, Thomas. Kernels for structured data. Vol. 72. World Scientific, 2008.
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The intersection kernel on fuzzy sets

Notation Fs(2) stands for the set of all fuzzy sets over Q whose support
belongs to S, i.e.,

Fs(Q) = {X C Q|supp(X) € S}.

where S is a semi-ring of sets on
v
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The intersection kernel on fuzzy sets

Notation Fs(2) stands for the set of all fuzzy sets over Q whose support
belongs to S, i.e.,

Fs(Q) = {X C Q|supp(X) € S}.

where S is a semi-ring of sets on

Example
If XNY € Fs(Q) then satisfy (finite decomposition):

supp(XNY) = UA,-, Ai €S,
i€l

where {A1, Az, ..., Ay}. are pairwise disjoint sets

v
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Intersection Kernel on Fuzzy Sets

Example cont.

We can measure supp(X N Y) = J;; Ai, Ai €S using the measure
p:S —[0,00] as follows:

p(supp(XNY)) = p(U Aj) = ZP(Ai)7

iel i€l
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Intersection Kernel on Fuzzy Sets

Example cont.

We can measure supp(X N Y) = J;; Ai, Ai €S using the measure
p:S —[0,00] as follows:

p(supp(XNY)) = p(U Aj) = ZP(Ai)7

iel i€l

Adding fuzziness

The idea to include fuzziness is to weight each p(A;) by a value given by the
contribution of the membership function on all the elements of the set A;.

v
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Intersection Kernel on Fuzzy Sets

The intersection kernel on fuzzy sets is a function:
kn : Fs(2) x Fs(Q2) — R, defined by:

(X, Y) =D (XN Y)(A)p(A), (18)

i€l

where (XN Y)(A) =X ca (XNY) (x)

Guevara, Jorge, et.al. "Positive Definite Kernel Functions on Fuzzy Sets." Fuzzy Systems (FUZZ-IEEE), 2014.
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Intersection Kernel on Fuzzy Sets

Kernel kA can be implemented via T-norm operators:

ka(X.Y) = > (XN Y)(A)n(A)

iel

= > > (XnY)(x)n(A)
iel xeA;

= > Y T(X x))p(A;)
i€l x€A;
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Intersection Kernel on Fuzzy Sets

Some kernel examples for different T-norm operators Examples

Kernel kA T-norm
ko min(X,Y) =2 i erA; min(X(x), Y(x))p(A) minimum
kﬂ_pro(X7 Y)= Zie/ ZXGA,- X(x)Y (x)p(A) product

ko eak(X,Y) =221 D oven Mmax(X(x) + Y(x) — 1,0)p(A)  tukasiewicz

ko pra(X, Y) =2 ics Dxen FIX(X), Y(x))p(A) Drastic

where f is defined as

X(x), if Y(x)=1
f(X(x),Y(x) =< Y(x), if X(x)=1
0, otherwise

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 60 / 74



Intersection Kernel on Fuzzy Sets

Lemma

kmin (X5 Y) = 3 2ie 2oxea, min(ux (x), py (x))p(Ai)
is positive definite

Lemma

kp(Xs Y)=2ic1 2oxen, ix(X)my (X)p(Ai)
is positive definite.
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Intersection Kernel on Fuzzy Sets

Lemma

kmin (X5 Y) = 3 2ie 2oxea, min(ux (x), py (x))p(Ai)
is positive definite

v

Lemma

kp(Xs Y)=2ic1 2oxen, ix(X)my (X)p(Ai)
is positive definite.

K(X,Y) ( (X(data(i,:)),Y(data(i,:))))
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The non-singleton kernel on fuzzy sets

Definition
This kernel is a function kng : F(2) x F(Q2) — [0, 1] defined by:

knsk( X, Y) = )s(gg (XNY)(x)

= sup (T(X(X)’ Y (x)) )’

x€EQ

where sup is the supremum.

Derived from non-singleton fuzzy systems.

Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019
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The non-singleton kernel on fuzzy sets

Examples Given X = (X1,...,X4,...,Xp) and

Y =(Y1,...,Xd,..., YD), such that: X4(.) = exp ( 1%), where,
94

mg € R amd o4 € RT, then, the following kernel

B D _1(mg — m’,)?
knsk(X, Y) = HGXP < 2‘W> ) (19)

is a positive definite kernel.

Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."
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The non-singleton kernel on fuzzy sets

Examples Given X = (X1,...,X4,...,Xp) and

Y =(Y1,...,Xd,..., YD), such that: X4(.) = exp ( 1%), where,
94

mg € R amd o4 € RT, then, the following kernel

K (X,Y) = |D| ( L (mq — my)’ ) (20)
exp| —z—5——",
RS AN 2 AR

is a positive definite kernel.

Guevara, Jorge, et.al."Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."
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Distance-based kernels on fuzzy sets

Based on the concept of distance substitution kernels. Examples Kernel

Kp(X, X') = exp(—AD(X, X")?),is PD when we use the following metric
X(x) — X’

on fuzzy sets: D(X, X') = 2xen X () /(X)l.

2 oxeq IX(x) + X'(x)|

Guevara, Jorge, et.al. "Fuzzy Set Similarity using a Distance-Based Kernel on Fuzzy Sets", 2016, Book Chapter,
Handbook of Fuzzy Sets Comparison - Theory, Algorithms and Applications,pages 103-120
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Outline

@ Support fuzzy-set machines

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 66 / 74



Fuzzy kernel machines

Definition (Support fuzzy-set machines)

Kernels machines with kernel gram matrix constructed by kernels on fuzzy
sets.
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Fuzzy kernel machines

Definition (Support fuzzy-set machines)
Kernels machines with kernel gram matrix constructed by kernels on fuzzy
sets.

Support fuzzy-set machines learn f =" ajk(X, ) using the SVM
algorithm
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Fuzzy kernel machines

Definition (Support fuzzy-set machines)

Kernels machines with kernel gram matrix constructed by kernels on fuzzy
sets.

Support fuzzy-set machines learn f =" ajk(X, ) using the SVM
algorithm

Definition (Support fuzzy-sets)

Is the set given by all the fuzzy sets used in a kernel machine such the
correspondent «; > 0.
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Support fuzzy-set machines

Support fuzzy-set machine example using the fuzzy-kernel-machines
library (see notebook 4 and 5)

Data Fuzzification process Kernel Gram Matrix from

Fuzzy Data
Kernel Function on ' Fuzzy Kernel Machine
fuzzy sets | S
Algorithm for estimating
» » kxy) ®» LB @) = k()

Data set Fuzzy Dataset 1R SO

Guevara ,Hirata , Canu , Fuzz IEEE 2019 Support Fuzzy-Set Machines June, 2019 68 / 74



Support fuzzy-set machines

Practical example on supervised classification on noisy data:

Table: Summary of the PIMA dataset

Dataset %Noise
pima-5an-nn 5%
pima-10an-nn 10%
pima-15an-nn 15%
pima-20an-nn 20%
pima-5an-nc 5%
pima-10an-nc 10%
pima-15an-nc 15%
pima-20an-nc 20%

Pima, 768 observations, 35/65 class rate
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Support fuzzy-set machines

Algorithm 1 First fuzzification approach
Input: D = {(z;,4:)}Y,
N
Output: MF = {(zi, X1(z}),..., Xp(zP),w)},_,
for each class y; do
for d=1to D do
q1,92,q3 = quantile(m‘fSiSN, (0.25,0.5,0.75))
Hd = q2
oda=|g3 —q1|/(2* /2 xlog2)
Xa(.) = exp(—0.5(. — pa)?/a3)
end for
end for
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Support fuzzy-set machines

Algorithm 2 Second fuzzification approach
Input: D = {(zi,5:) i,
Output: MF = {(z;, X1(z}),..., Xp(zP),u:) }
for each class y; do
for d=11to D do
h = histogram(z$ ., x)

N

i=1

h = h/ max(h)
X4(.) = linear Interpolation(h)
end for
end for
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Support fuzzy-set machines

Kernels used on the experiment

Kernel

i ka(x,y) kx (X, Y)
® ... linear
® ....... Gaussian Fuzzy linear Z xyX(x)Y(y)
® - - - - fuzzy linear - | xEsupp(X),
®----fuzzyexp-| y€Esupp(Y)
® - - - - fuzzy Gaussian - | Fuzzy exp Do e X YY)
® ___ fuzzylinear- || ng:fs&(y)’)
©__ fuzzyexp- |l Fuzzy Gaussian Z exp(—~||x — sz)X(x)Y(y)
® fuzzy Gaussian - Il xEsupp(X),
yEsupp(Y)
Table
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Support fuzzy-set machines

1.00] L 1.007
- ::::.:.__z_ _____ :’,.____ -
0.957 * e 0.95 S===z4-z=z=8
0.907 0.90
T 3] .
m =1 .
2 0853 = 0857 "
0.807 332::;:,_\ 0.80 .
] s ST ] ‘:"ifj::_—--- __________ <
0.75; “'-:Z‘.'_-_:::::_l__‘ 0.755 bl T —e
0.707 0.707
5 10 15 20 5 10 15 20
Noise Level (%) Noise Level (%)

(a) (b)
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Conclusions and next steps

@ similarity measure between fuzzy sets given by kernels
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