MAC0417/MAC5768 - Visão e Processamento de Imagens - Parte I

Lista de exercícios 2 – Data de entrega: 30/04/2002

 $\mathbf{Q1.}$ Mostre que a transformada de Fourier \mathcal{F}

$$\mathcal{F}(f) = F(u) = \int_{-\infty}^{+\infty} f(x) e^{-j2\pi ux} dx$$

é um processo linear, isto é, para quaisquer constantes a e b,

$$\mathcal{F}(af + bg) = a\mathcal{F}(f) + b\mathcal{F}(g)$$

 ${f Q2.}$ Mostre que a transformada discreta de Fourier ${\cal F}$

$$\mathcal{F}(f) = F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux}$$

tem período M, isto é,

$$F(u) = F(u + M)$$

Q3. O processo de filtragem no domínio das freqüências consiste em (a) calcular a tranformada de Fourier, F(u,v), de f(x,y), (b) multiplicar F(u,v) por um filtro H(u,v), e (c) calcular a transformada inversa do resultado obtido em (b).

O que acontece com a imagem f(x,y) após uma filtragem pelo filtro H(u,v)=a, onde a é uma constante real positiva ?

- Q4. Dada uma imagem de tamanho $M \times N$, considere o experimento de aplicar repetidamente o filtro Gaussiano passa-baixas $(H(u,v)=e^{-D^2(u,v)/2D_0^2})$, para um dado valor fixo D_0 . Ignorando os erros de arredondamento,
 - a) o que acontece se as aplicações são repetidas um número de vezes suficientemente grande K? Em termos de resultado, que tipo de imagem você espera obter?
 - b) Se K_{min} é o menor número positivo que pode ser representado em seu computador, qual é o menor número de aplicações K que garante a obtenção do resultado esperado em (a) ?

E se o filtro aplicado for um Gaussiano passa-altas $(H(u,v)=1-e^{-D^2(u,v)/2D_0^2})$? Pode-se dizer alguma coisa em relação a aplicações repetidas do filtro ?

- **Q5.** A abordagem básica usada para aproximar derivadas discretas envolve diferenças da forma f(x+1,y)-f(x,y).
 - a) Qual seria o filtro H(u,v) que realiza o processo equivalente no domínio das freqüências?
 - b) Mostre que H(u, v) é um filtro passa-altas.