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2 Digital Image
Fundamentals

Those who wish to succeed must ask the right preliminary questions.
Aristotle

Preview
The purpose of this chapter is to introduce several concepts related to digital im-
ages and some of the notation used throughout the book. Section 2.1 briefly
summarizes the mechanics of the human visual system, including image for-
mation in the eye and its capabilities for brightness adaptation and discrimina-
tion. Section 2.2 discusses light, other components of the electromagnetic
spectrum, and their imaging characteristics. Section 2.3 discusses imaging sen-
sors and how they are used to generate digital images. Section 2.4 introduces the
concepts of uniform image sampling and gray-level quantization. Additional
topics discussed in that section include digital image representation, the effects
of varying the number of samples and gray levels in an image, some important
phenomena associated with sampling, and techniques for image zooming and
shrinking. Section 2.5 deals with some basic relationships between pixels that are
used throughout the book. Finally, Section 2.6 defines the conditions for linear
operations. As noted in that section, linear operators play a central role in the
development of image processing techniques.

Elements of Visual Perception

Although the digital image processing field is built on a foundation of mathe-
matical and probabilistic formulations, human intuition and analysis play a cen-
tral role in the choice of one technique versus another, and this choice often is

2.1
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FIGURE 2.1
Simplified
diagram of a cross
section of the
human eye.

made based on subjective, visual judgments. Hence, developing a basic under-
standing of human visual perception as a first step in our journey through this
book is appropriate. Given the complexity and breadth of this topic, we can
only aspire to cover the most rudimentary aspects of human vision. In particu-
lar, our interest lies in the mechanics and parameters related to how images are
formed in the eye. We are interested in learning the physical limitations of
human vision in terms of factors that also are used in our work with digital im-
ages.Thus, factors such as how human and electronic imaging compare in terms
of resolution and ability to adapt to changes in illumination are not only inter-
esting, they also are important from a practical point of view.

2.1.1 Structure of the Human Eye
Figure 2.1 shows a simplified horizontal cross section of the human eye. The
eye is nearly a sphere, with an average diameter of approximately 20 mm.Three
membranes enclose the eye: the cornea and sclera outer cover; the choroid; and
the retina. The cornea is a tough, transparent tissue that covers the anterior

GONZ02-034-074.II  29-08-2001  13:35  Page 35



36 Chapter 2 � Digital Image Fundamentals

surface of the eye. Continuous with the cornea, the sclera is an opaque mem-
brane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a net-
work of blood vessels that serve as the major source of nutrition to the eye.
Even superficial injury to the choroid, often not deemed serious, can lead to se-
vere eye damage as a result of inflammation that restricts blood flow. The
choroid coat is heavily pigmented and hence helps to reduce the amount of ex-
traneous light entering the eye and the backscatter within the optical globe.At
its anterior extreme, the choroid is divided into the ciliary body and the iris
diaphragm. The latter contracts or expands to control the amount of light that
enters the eye. The central opening of the iris (the pupil) varies in diameter
from approximately 2 to 8 mm. The front of the iris contains the visible pig-
ment of the eye, whereas the back contains a black pigment.

The lens is made up of concentric layers of fibrous cells and is suspended by
fibers that attach to the ciliary body. It contains 60 to 70% water, about 6% fat, and
more protein than any other tissue in the eye.The lens is colored by a slightly yel-
low pigmentation that increases with age. In extreme cases, excessive clouding of
the lens, caused by the affliction commonly referred to as cataracts, can lead to
poor color discrimination and loss of clear vision.The lens absorbs approximate-
ly 8% of the visible light spectrum, with relatively higher absorption at shorter
wavelengths. Both infrared and ultraviolet light are absorbed appreciably by pro-
teins within the lens structure and, in excessive amounts, can damage the eye.

The innermost membrane of the eye is the retina, which lines the inside of the
wall’s entire posterior portion. When the eye is properly focused, light from an
object outside the eye is imaged on the retina. Pattern vision is afforded by the
distribution of discrete light receptors over the surface of the retina.There are two
classes of receptors: cones and rods. The cones in each eye number between 6
and 7 million. They are located primarily in the central portion of the retina,
called the fovea, and are highly sensitive to color. Humans can resolve fine de-
tails with these cones largely because each one is connected to its own nerve end.
Muscles controlling the eye rotate the eyeball until the image of an object of in-
terest falls on the fovea. Cone vision is called photopic or bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed
over the retinal surface. The larger area of distribution and the fact that sever-
al rods are connected to a single nerve end reduce the amount of detail dis-
cernible by these receptors. Rods serve to give a general, overall picture of the
field of view. They are not involved in color vision and are sensitive to low lev-
els of illumination. For example, objects that appear brightly colored in day-
light when seen by moonlight appear as colorless forms because only the rods
are stimulated. This phenomenon is known as scotopic or dim-light vision.

Figure 2.2 shows the density of rods and cones for a cross section of the right
eye passing through the region of emergence of the optic nerve from the eye.
The absence of receptors in this area results in the so-called blind spot (see
Fig. 2.1). Except for this region, the distribution of receptors is radially sym-
metric about the fovea. Receptor density is measured in degrees from the fovea
(that is, in degrees off axis, as measured by the angle formed by the visual axis
and a line passing through the center of the lens and intersecting the retina).
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Note in Fig. 2.2 that cones are most dense in the center of the retina (in the cen-
ter area of the fovea). Note also that rods increase in density from the center
out to approximately 20° off axis and then decrease in density out to the extreme
periphery of the retina.

The fovea itself is a circular indentation in the retina of about 1.5 mm in di-
ameter. However, in terms of future discussions, talking about square or rec-
tangular arrays of sensing elements is more useful.Thus, by taking some liberty
in interpretation, we can view the fovea as a square sensor array of size
1.5 mm*1.5 mm. The density of cones in that area of the retina is approxi-
mately 150,000 elements per mm2. Based on these approximations, the number
of cones in the region of highest acuity in the eye is about 337,000 elements.
Just in terms of raw resolving power, a charge-coupled device (CCD) imaging
chip of medium resolution can have this number of elements in a receptor array
no larger than 5 mm*5 mm. While the ability of humans to integrate intelli-
gence and experience with vision makes this type of comparison dangerous.
Keep in mind for future discussions that the basic ability of the eye to resolve
detail is certainly within the realm of current electronic imaging sensors.

2.1.2 Image Formation in the Eye
The principal difference between the lens of the eye and an ordinary optical
lens is that the former is flexible. As illustrated in Fig. 2.1, the radius of curva-
ture of the anterior surface of the lens is greater than the radius of its posteri-
or surface. The shape of the lens is controlled by tension in the fibers of the
ciliary body. To focus on distant objects, the controlling muscles cause the lens
to be relatively flattened. Similarly, these muscles allow the lens to become
thicker in order to focus on objects near the eye.

The distance between the center of the lens and the retina (called the focal
length) varies from approximately 17 mm to about 14 mm, as the refractive
power of the lens increases from its minimum to its maximum. When the eye
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center of the lens.

focuses on an object farther away than about 3 m, the lens exhibits its lowest re-
fractive power.When the eye focuses on a nearby object, the lens is most strong-
ly refractive. This information makes it easy to calculate the size of the retinal
image of any object. In Fig. 2.3, for example, the observer is looking at a tree
15 m high at a distance of 100 m. If h is the height in mm of that object in the
retinal image, the geometry of Fig. 2.3 yields 15/100=h/17 or h=2.55 mm.As
indicated in Section 2.1.1, the retinal image is reflected primarily in the area of
the fovea. Perception then takes place by the relative excitation of light recep-
tors, which transform radiant energy into electrical impulses that are ultimate-
ly decoded by the brain.

2.1.3 Brightness Adaptation and Discrimination
Because digital images are displayed as a discrete set of intensities, the eye’s
ability to discriminate between different intensity levels is an important con-
sideration in presenting image-processing results.The range of light intensity lev-
els to which the human visual system can adapt is enormous—on the order of
1010—from the scotopic threshold to the glare limit. Experimental evidence in-
dicates that subjective brightness (intensity as perceived by the human visual
system) is a logarithmic function of the light intensity incident on the eye. Fig-
ure 2.4, a plot of light intensity versus subjective brightness, illustrates this char-
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2.1 � Elements of Visual Perception 39

acteristic. The long solid curve represents the range of intensities to which the
visual system can adapt. In photopic vision alone, the range is about 106. The
transition from scotopic to photopic vision is gradual over the approximate
range from 0.001 to 0.1 millilambert (–3 to –1 mL in the log scale), as the dou-
ble branches of the adaptation curve in this range show.

The essential point in interpreting the impressive dynamic range depicted
in Fig. 2.4 is that the visual system cannot operate over such a range simultane-
ously. Rather, it accomplishes this large variation by changes in its overall sen-
sitivity, a phenomenon known as brightness adaptation. The total range of
distinct intensity levels it can discriminate simultaneously is rather small when
compared with the total adaptation range. For any given set of conditions, the
current sensitivity level of the visual system is called the brightness adaptation
level, which may correspond, for example, to brightness Ba in Fig. 2.4.The short
intersecting curve represents the range of subjective brightness that the eye can
perceive when adapted to this level. This range is rather restricted, having a
level Bb at and below which all stimuli are perceived as indistinguishable blacks.
The upper (dashed) portion of the curve is not actually restricted but, if ex-
tended too far, loses its meaning because much higher intensities would simply
raise the adaptation level higher than Ba .

The ability of the eye to discriminate between changes in light intensity at any
specific adaptation level is also of considerable interest. A classic experiment
used to determine the capability of the human visual system for brightness dis-
crimination consists of having a subject look at a flat, uniformly illuminated
area large enough to occupy the entire field of view.This area typically is a dif-
fuser, such as opaque glass, that is illuminated from behind by a light source
whose intensity, I, can be varied. To this field is added an increment of illumi-
nation, �I, in the form of a short-duration flash that appears as a circle in the
center of the uniformly illuminated field, as Fig. 2.5 shows.

If �I is not bright enough, the subject says “no,” indicating no perceivable
change.As �I gets stronger, the subject may give a positive response of “yes,” in-
dicating a perceived change. Finally, when �I is strong enough, the subject will
give a response of “yes” all the time.The quantity where is the incre-
ment of illumination discriminable 50% of the time with background illumina-
tion I, is called the Weber ratio. A small value of means that a small
percentage change in intensity is discriminable.This represents “good” brightness
discrimination. Conversely, a large value of means that a large percentage
change in intensity is required.This represents “poor” brightness discrimination.

¢Ic�I,

¢Ic�I,

¢Ic¢Ic�I,

I

I+¢I

FIGURE 2.5 Basic
experimental
setup used to
characterize
brightness
discrimination.
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A plot of as a function of log I has the general shape shown in
Fig. 2.6.This curve shows that brightness discrimination is poor (the Weber ratio
is large) at low levels of illumination, and it improves significantly (the Weber
ratio decreases) as background illumination increases.The two branches in the
curve reflect the fact that at low levels of illumination vision is carried out by
activity of the rods, whereas at high levels (showing better discrimination) vi-
sion is the function of cones.

If the background illumination is held constant and the intensity of the
other source, instead of flashing, is now allowed to vary incrementally from
never being perceived to always being perceived, the typical observer can dis-
cern a total of one to two dozen different intensity changes. Roughly, this re-
sult is related to the number of different intensities a person can see at any one
point in a monochrome image.This result does not mean that an image can be
represented by such a small number of intensity values because, as the eye
roams about the image, the average background changes, thus allowing a
different set of incremental changes to be detected at each new adaptation
level. The net consequence is that the eye is capable of a much broader range
of overall intensity discrimination. In fact, we show in Section 2.4.3 that the eye
is capable of detecting objectionable contouring effects in monochrome im-
ages whose overall intensity is represented by fewer than approximately two
dozen levels.

Two phenomena clearly demonstrate that perceived brightness is not a sim-
ple function of intensity. The first is based on the fact that the visual system
tends to undershoot or overshoot around the boundary of regions of different
intensities. Figure 2.7(a) shows a striking example of this phenomenon. Al-
though the intensity of the stripes is constant, we actually perceive a brightness
pattern that is strongly scalloped, especially near the boundaries [Fig. 2.7(b)].
These seemingly scalloped bands are called Mach bands after Ernst Mach, who
first described the phenomenon in 1865.

The second phenomenon, called simultaneous contrast, is related to the fact
that a region’s perceived brightness does not depend simply on its intensity, as
Fig. 2.8 demonstrates. All the center squares have exactly the same intensity.

log ¢Ic�I,
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Actual illumination

Perceived brightness

However, they appear to the eye to become darker as the background gets
lighter.A more familiar example is a piece of paper that seems white when lying
on a desk, but can appear totally black when used to shield the eyes while look-
ing directly at a bright sky.

FIGURE 2.7
(a) An example
showing that
perceived
brightness is not a
simple function of
intensity. The
relative vertical
positions between
the two profiles in
(b) have no
special
significance; they
were chosen for
clarity.

a
b

FIGURE 2.8 Examples of simultaneous contrast.All the inner squares have the same in-
tensity, but they appear progressively darker as the background becomes lighter.
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FIGURE 2.9 Some
well-known
optical illusions.
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Other examples of human perception phenomena are optical illusions, in
which the eye fills in nonexisting information or wrongly perceives geometrical
properties of objects. Some examples are shown in Fig. 2.9. In Fig. 2.9(a), the out-
line of a square is seen clearly, in spite of the fact that no lines defining such a
figure are part of the image.The same effect, this time with a circle, can be seen
in Fig. 2.9(b); note how just a few lines are sufficient to give the illusion of a
complete circle. The two horizontal line segments in Fig. 2.9(c) are of the same
length, but one appears shorter than the other. Finally, all lines in Fig. 2.9(d)
that are oriented at 45° are equidistant and parallel. Yet the crosshatching cre-
ates the illusion that those lines are far from being parallel. Optical illusions
are a characteristic of the human visual system that is not fully understood.

Light and the Electromagnetic Spectrum

The electromagnetic spectrum was introduced in Section 1.3. We now consider
this topic in more detail. In 1666, Sir Isaac Newton discovered that when a beam
of sunlight is passed through a glass prism, the emerging beam of light is not

2.2
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FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation,
but note that the visible spectrum is a rather narrow portion of the EM spectrum.

white but consists instead of a continuous spectrum of colors ranging from vio-
let at one end to red at the other. As shown in Fig. 2.10, the range of colors we
perceive in visible light represents a very small portion of the electromagnetic
spectrum. On one end of the spectrum are radio waves with wavelengths billions
of times longer than those of visible light. On the other end of the spectrum are
gamma rays with wavelengths millions of times smaller than those of visible light.
The electromagnetic spectrum can be expressed in terms of wavelength, fre-
quency, or energy.Wavelength (l) and frequency (n) are related by the expression

(2.2-1)

where c is the speed of light (2.998*108 m�s).The energy of the various com-
ponents of the electromagnetic spectrum is given by the expression

E=hn (2.2-2)

where h is Planck’s constant.The units of wavelength are meters, with the terms
microns (denoted �m and equal to 10–6 m) and nanometers (10–9 m) being used
just as frequently. Frequency is measured in Hertz (Hz), with one Hertz being
equal to one cycle of a sinusoidal wave per second.A commonly used unit of en-
ergy is the electron-volt.

l =
c
n
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lFIGURE 2.11
Graphical
representation of
one wavelength.

Electromagnetic waves can be visualized as propagating sinusoidal waves with
wavelength l (Fig. 2.11), or they can be thought of as a stream of massless parti-
cles, each traveling in a wavelike pattern and moving at the speed of light. Each
massless particle contains a certain amount (or bundle) of energy. Each bundle
of energy is called a photon.We see from Eq. (2.2-2) that energy is proportional
to frequency, so the higher-frequency (shorter wavelength) electromagnetic phe-
nomena carry more energy per photon.Thus, radio waves have photons with low
energies, microwaves have more energy than radio waves, infrared still more, then
visible, ultraviolet, X-rays, and finally gamma rays, the most energetic of all.This
is the reason that gamma rays are so dangerous to living organisms.

Light is a particular type of electromagnetic radiation that can be seen and
sensed by the human eye. The visible (color) spectrum is shown expanded in
Fig. 2.10 for the purpose of discussion (we consider color in much more detail in
Chapter 6).The visible band of the electromagnetic spectrum spans the range from
approximately 0.43 �m (violet) to about 0.79 �m (red).For convenience, the color
spectrum is divided into six broad regions: violet, blue, green, yellow, orange, and
red. No color (or other component of the electromagnetic spectrum) ends abrupt-
ly, but rather each range blends smoothly into the next, as shown in Fig. 2.10.

The colors that humans perceive in an object are determined by the nature of
the light reflected from the object. A body that reflects light and is relatively bal-
anced in all visible wavelengths appears white to the observer.However,a body that
favors reflectance in a limited range of the visible spectrum exhibits some shades
of color. For example, green objects reflect light with wavelengths primarily in the
500 to 570 nm range while absorbing most of the energy at other wavelengths.

Light that is void of color is called achromatic or monochromatic light. The
only attribute of such light is its intensity, or amount. The term gray level gen-
erally is used to describe monochromatic intensity because it ranges from black,
to grays, and finally to white. Chromatic light spans the electromagnetic ener-
gy spectrum from approximately 0.43 to 0.79 �m, as noted previously. Three
basic quantities are used to describe the quality of a chromatic light source: ra-
diance; luminance; and brightness. Radiance is the total amount of energy that
flows from the light source, and it is usually measured in watts (W). Luminance,
measured in lumens (lm), gives a measure of the amount of energy an observ-
er perceives from a light source. For example, light emitted from a source op-
erating in the far infrared region of the spectrum could have significant energy
(radiance), but an observer would hardly perceive it; its luminance would be
almost zero. Finally, as discussed in Section 2.1, brightness is a subjective de-
scriptor of light perception that is practically impossible to measure. It embod-
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ies the achromatic notion of intensity and is one of the key factors in describ-
ing color sensation.

Continuing with the discussion of Fig. 2.10, we note that at the short-wave-
length end of the electromagnetic spectrum, we have gamma rays and hard
X-rays.As discussed in Section 1.3.1, gamma radiation is important for medical
and astronomical imaging, and for imaging radiation in nuclear environments.
Hard (high-energy) X-rays are used in industrial applications. Chest X-rays are
in the high end (shorter wavelength) of the soft X-rays region and dental X-rays
are in the lower energy end of that band. The soft X-ray band transitions into
the far ultraviolet light region, which in turn blends with the visible spectrum at
longer wavelengths. Moving still higher in wavelength, we encounter the in-
frared band, which radiates heat, a fact that makes it useful in imaging applica-
tions that rely on “heat signatures.” The part of the infrared band close to the
visible spectrum is called the near-infrared region.The opposite end of this band
is called the far-infrared region. This latter region blends with the microwave
band. This band is well known as the source of energy in microwave ovens, but
it has many other uses, including communication and radar. Finally, the radio
wave band encompasses television as well as AM and FM radio. In the higher
energies, radio signals emanating from certain stellar bodies are useful in as-
tronomical observations. Examples of images in most of the bands just discussed
are given in Section 1.3.

In principle, if a sensor can be developed that is capable of detecting energy
radiated by a band of the electromagnetic spectrum, we can image events of in-
terest in that band. It is important to note, however, that the wavelength of an
electromagnetic wave required to “see” an object must be of the same size as
or smaller than the object. For example, a water molecule has a diameter on
the order of 10–10 m.Thus, to study molecules, we would need a source capable
of emitting in the far ultraviolet or soft X-ray region.This limitation, along with
the physical properties of the sensor material, establishes the fundamental lim-
its on the capability of imaging sensors, such as visible, infrared, and other sen-
sors in use today.

Although imaging is based predominantly on energy radiated by electro-
magnetic waves, this is not the only method for image generation. For example,
as discussed in Section 1.3.7, sound reflected from objects can be used to form
ultrasonic images. Other major sources of digital images are electron beams for
electron microscopy and synthetic images used in graphics and visualization.

Image Sensing and Acquisition

The types of images in which we are interested are generated by the combina-
tion of an “illumination” source and the reflection or absorption of energy from
that source by the elements of the “scene” being imaged. We enclose illumina-
tion and scene in quotes to emphasize the fact that they are considerably more
general than the familiar situation in which a visible light source illuminates a
common everyday 3-D (three-dimensional) scene. For example, the illumination
may originate from a source of electromagnetic energy such as radar, infrared,

2.3
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or X-ray energy. But, as noted earlier, it could originate from less traditional
sources, such as ultrasound or even a computer-generated illumination pattern.
Similarly, the scene elements could be familiar objects, but they can just as eas-
ily be molecules, buried rock formations, or a human brain.We could even image
a source, such as acquiring images of the sun. Depending on the nature of the
source, illumination energy is reflected from, or transmitted through, objects.An
example in the first category is light reflected from a planar surface. An exam-
ple in the second category is when X-rays pass through a patient’s body for the
purpose of generating a diagnostic X-ray film. In some applications, the re-
flected or transmitted energy is focused onto a photoconverter (e.g., a phos-
phor screen), which converts the energy into visible light. Electron microscopy
and some applications of gamma imaging use this approach.

Figure 2.12 shows the three principal sensor arrangements used to transform
illumination energy into digital images. The idea is simple: Incoming energy is

Sensing material

Voltage waveform out

Filter

Energy

Power in

Housing

FIGURE 2.12
(a) Single imaging
sensor.
(b) Line sensor.
(c) Array sensor.
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b
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FIGURE 2.13 Combining a single sensor with motion to generate a 2-D image.

transformed into a voltage by the combination of input electrical power and
sensor material that is responsive to the particular type of energy being de-
tected.The output voltage waveform is the response of the sensor(s), and a dig-
ital quantity is obtained from each sensor by digitizing its response. In this
section, we look at the principal modalities for image sensing and generation.
Image digitizing is discussed in Section 2.4.

2.3.1 Image Acquisition Using a Single Sensor
Figure 2.12(a) shows the components of a single sensor. Perhaps the most fa-
miliar sensor of this type is the photodiode, which is constructed of silicon ma-
terials and whose output voltage waveform is proportional to light. The use of
a filter in front of a sensor improves selectivity. For example, a green (pass) fil-
ter in front of a light sensor favors light in the green band of the color spec-
trum.As a consequence, the sensor output will be stronger for green light than
for other components in the visible spectrum.

In order to generate a 2-D image using a single sensor, there has to be rela-
tive displacements in both the x- and y-directions between the sensor and the
area to be imaged. Figure 2.13 shows an arrangement used in high-precision
scanning, where a film negative is mounted onto a drum whose mechanical ro-
tation provides displacement in one dimension.The single sensor is mounted on
a lead screw that provides motion in the perpendicular direction. Since me-
chanical motion can be controlled with high precision, this method is an inex-
pensive (but slow) way to obtain high-resolution images. Other similar
mechanical arrangements use a flat bed, with the sensor moving in two linear
directions. These types of mechanical digitizers sometimes are referred to as
microdensitometers.

Another example of imaging with a single sensor places a laser source coin-
cident with the sensor. Moving mirrors are used to control the outgoing beam
in a scanning pattern and to direct the reflected laser signal onto the sensor.
This arrangement also can be used to acquire images using strip and array sen-
sors, which are discussed in the following two sections.
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FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

2.3.2 Image Acquisition Using Sensor Strips
A geometry that is used much more frequently than single sensors consists of
an in-line arrangement of sensors in the form of a sensor strip, as Fig. 2.12(b)
shows. The strip provides imaging elements in one direction. Motion perpen-
dicular to the strip provides imaging in the other direction, as shown in
Fig. 2.14(a).This is the type of arrangement used in most flat bed scanners. Sens-
ing devices with 4000 or more in-line sensors are possible. In-line sensors are
used routinely in airborne imaging applications, in which the imaging system is
mounted on an aircraft that flies at a constant altitude and speed over the ge-
ographical area to be imaged. One-dimensional imaging sensor strips that re-
spond to various bands of the electromagnetic spectrum are mounted
perpendicular to the direction of flight. The imaging strip gives one line of an
image at a time, and the motion of the strip completes the other dimension of
a two-dimensional image. Lenses or other focusing schemes are used to pro-
ject the area to be scanned onto the sensors.

Sensor strips mounted in a ring configuration are used in medical and in-
dustrial imaging to obtain cross-sectional (“slice”) images of 3-D objects, as
Fig. 2.14(b) shows. A rotating X-ray source provides illumination and the por-

a b
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2.3 � Image Sensing and Acquisition 49

tion of the sensors opposite the source collect the X-ray energy that pass through
the object (the sensors obviously have to be sensitive to X-ray energy). This is
the basis for medical and industrial computerized axial tomography (CAT)
imaging as indicated in Sections 1.2 and 1.3.2. It is important to note that the out-
put of the sensors must be processed by reconstruction algorithms whose ob-
jective is to transform the sensed data into meaningful cross-sectional images.
In other words, images are not obtained directly from the sensors by motion
alone; they require extensive processing. A 3-D digital volume consisting of
stacked images is generated as the object is moved in a direction perpendicu-
lar to the sensor ring. Other modalities of imaging based on the CAT principle
include magnetic resonance imaging (MRI) and positron emission tomography
(PET).The illumination sources, sensors, and types of images are different, but
conceptually they are very similar to the basic imaging approach shown in
Fig. 2.14(b).

2.3.3 Image Acquisition Using Sensor Arrays
Figure 2.12(c) shows individual sensors arranged in the form of a 2-D array.
Numerous electromagnetic and some ultrasonic sensing devices frequently are
arranged in an array format. This is also the predominant arrangement found
in digital cameras.A typical sensor for these cameras is a CCD array, which can
be manufactured with a broad range of sensing properties and can be packaged
in rugged arrays of elements or more. CCD sensors are used wide-
ly in digital cameras and other light sensing instruments. The response of each
sensor is proportional to the integral of the light energy projected onto the sur-
face of the sensor, a property that is used in astronomical and other applica-
tions requiring low noise images. Noise reduction is achieved by letting the
sensor integrate the input light signal over minutes or even hours (we discuss
noise reduction by integration in Chapter 3). Since the sensor array shown in
Fig. 2.15(c) is two dimensional, its key advantage is that a complete image can
be obtained by focusing the energy pattern onto the surface of the array. Mo-
tion obviously is not necessary, as is the case with the sensor arrangements dis-
cussed in the preceding two sections.

The principal manner in which array sensors are used is shown in Fig. 2.15.
This figure shows the energy from an illumination source being reflected from
a scene element, but, as mentioned at the beginning of this section, the energy
also could be transmitted through the scene elements. The first function per-
formed by the imaging system shown in Fig. 2.15(c) is to collect the incoming
energy and focus it onto an image plane. If the illumination is light, the front end
of the imaging system is a lens, which projects the viewed scene onto the lens
focal plane, as Fig. 2.15(d) shows.The sensor array, which is coincident with the
focal plane, produces outputs proportional to the integral of the light received
at each sensor. Digital and analog circuitry sweep these outputs and convert
them to a video signal, which is then digitized by another section of the imag-
ing system. The output is a digital image, as shown diagrammatically in
Fig. 2.15(e). Conversion of an image into digital form is the topic of Section 2.4.

4000 * 4000
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Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene element

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination”) source. (b) An el-
ement of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

2.3.4 A Simple Image Formation Model
As introduced in Section 1.1, we shall denote images by two-dimensional func-
tions of the form f(x, y). The value or amplitude of f at spatial coordinates
(x, y) is a positive scalar quantity whose physical meaning is determined by
the source of the image. Most of the images in which we are interested in this
book are monochromatic images, whose values are said to span the gray scale,
as discussed in Section 2.2. When an image is generated from a physical
process, its values are proportional to energy radiated by a physical source
(e.g., electromagnetic waves).As a consequence, f(x, y) must be nonzero and
finite; that is,

0<f(x, y)<q. (2.3-1)

The function f(x, y) may be characterized by two components: (1) the
amount of source illumination incident on the scene being viewed, and (2) the
amount of illumination reflected by the objects in the scene. Appropriately,
these are called the illumination and reflectance components and are denoted
by i(x, y) and r(x, y), respectively. The two functions combine as a product to
form f(x, y):

a
b

c d e
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f(x, y)=i(x, y)r(x, y) (2.3-2)

where

0<i(x, y)<q (2.3-3)

and

0<r(x, y)<1. (2.3-4)

Equation (2.3-4) indicates that reflectance is bounded by 0 (total absorption)
and 1 (total reflectance).The nature of i(x, y) is determined by the illumination
source, and r(x, y) is determined by the characteristics of the imaged objects.
It is noted that these expressions also are applicable to images formed via trans-
mission of the illumination through a medium, such as a chest X-ray. In this
case, we would deal with a transmissivity instead of a reflectivity function, but the
limits would be the same as in Eq. (2.3-4), and the image function formed would
be modeled as the product in Eq. (2.3-2).

� The values given in Eqs. (2.3-3) and (2.3-4) are theoretical bounds. The fol-
lowing average numerical figures illustrate some typical ranges of i(x, y) for
visible light. On a clear day, the sun may produce in excess of 90,000 lm�m2 of
illumination on the surface of the Earth. This figure decreases to less than
10,000 lm�m2 on a cloudy day. On a clear evening, a full moon yields about
0.1 lm�m2 of illumination.The typical illumination level in a commercial office
is about 1000 lm�m2. Similarly, the following are some typical values of r(x, y):
0.01 for black velvet, 0.65 for stainless steel, 0.80 for flat-white wall paint, 0.90
for silver-plated metal, and 0.93 for snow. �

As noted in Section 2.2, we call the intensity of a monochrome image at any
coordinates Ax0, y0 B the gray level (/) of the image at that point. That is,

(2.3-5)

From Eqs. (2.3-2) through (2.3-4), it is evident that / lies in the range

(2.3-6)

In theory, the only requirement on Lmin is that it be positive, and on Lmax that it
be finite. In practice, Lmin=iminrmin and Lmax=imaxrmax. Using the preceding av-
erage office illumination and range of reflectance values as guidelines, we may
expect Lmin≠10 and Lmax≠1000 to be typical limits for indoor values in the
absence of additional illumination.

The interval is called the gray scale. Common practice is to shift
this interval numerically to the interval [0, L-1], where /=0 is considered
black and /=L-1 is considered white on the gray scale. All intermediate
values are shades of gray varying from black to white.

CLmin , Lmax D

Lmin � / � Lmax

/ = fAx0 , y0B

EXAMPLE 2.1:
Some typical
values of
illumination and
reflectance.
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Image Sampling and Quantization

From the discussion in the preceding section, we see that there are numerous
ways to acquire images, but our objective in all is the same: to generate digital
images from sensed data. The output of most sensors is a continuous voltage
waveform whose amplitude and spatial behavior are related to the physical
phenomenon being sensed. To create a digital image, we need to convert the
continuous sensed data into digital form.This involves two processes: sampling
and quantization.

2.4.1 Basic Concepts in Sampling and Quantization
The basic idea behind sampling and quantization is illustrated in Fig. 2.16. Fig-
ure 2.16(a) shows a continuous image, f(x, y), that we want to convert to digi-
tal form.An image may be continuous with respect to the x- and y-coordinates,
and also in amplitude.To convert it to digital form, we have to sample the func-
tion in both coordinates and in amplitude. Digitizing the coordinate values is
called sampling. Digitizing the amplitude values is called quantization.

The one-dimensional function shown in Fig. 2.16(b) is a plot of amplitude
(gray level) values of the continuous image along the line segment AB in
Fig. 2.16(a).The random variations are due to image noise.To sample this func-
tion, we take equally spaced samples along line AB, as shown in Fig. 2.16(c).The
location of each sample is given by a vertical tick mark in the bottom part of the
figure.The samples are shown as small white squares superimposed on the func-
tion.The set of these discrete locations gives the sampled function. However, the
values of the samples still span (vertically) a continuous range of gray-level val-
ues. In order to form a digital function, the gray-level values also must be con-
verted (quantized) into discrete quantities. The right side of Fig. 2.16(c) shows
the gray-level scale divided into eight discrete levels, ranging from black to
white.The vertical tick marks indicate the specific value assigned to each of the
eight gray levels. The continuous gray levels are quantized simply by assigning
one of the eight discrete gray levels to each sample. The assignment is made
depending on the vertical proximity of a sample to a vertical tick mark. The
digital samples resulting from both sampling and quantization are shown in
Fig. 2.16(d). Starting at the top of the image and carrying out this procedure
line by line produces a two-dimensional digital image.

Sampling in the manner just described assumes that we have a continuous
image in both coordinate directions as well as in amplitude. In practice, the
method of sampling is determined by the sensor arrangement used to generate
the image. When an image is generated by a single sensing element combined
with mechanical motion, as in Fig. 2.13, the output of the sensor is quantized in
the manner described above. However, sampling is accomplished by selecting
the number of individual mechanical increments at which we activate the sen-
sor to collect data. Mechanical motion can be made very exact so, in principle,
there is almost no limit as to how fine we can sample an image. However, prac-
tical limits are established by imperfections in the optics used to focus on the

2.4
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b)A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the

a b
c d
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54 Chapter 2 � Digital Image Fundamentals

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

sampling limits established by the number of sensors in the other. Quantiza-
tion of the sensor outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, there is no motion and
the number of sensors in the array establishes the limits of sampling in both di-
rections. Quantization of the sensor outputs is as before. Figure 2.17 illustrates
this concept. Figure 2.17(a) shows a continuous image projected onto the plane
of an array sensor. Figure 2.17(b) shows the image after sampling and quanti-
zation. Clearly, the quality of a digital image is determined to a large degree by
the number of samples and discrete gray levels used in sampling and quantiza-
tion. However, as shown in Section 2.4.3, image content is an important con-
sideration in choosing these parameters.

2.4.2 Representing Digital Images
The result of sampling and quantization is a matrix of real numbers.We will use
two principal ways in this book to represent digital images.Assume that an image
f(x, y) is sampled so that the resulting digital image has M rows and N columns.
The values of the coordinates (x, y) now become discrete quantities. For nota-
tional clarity and convenience, we shall use integer values for these discrete co-
ordinates. Thus, the values of the coordinates at the origin are (x, y)=(0, 0).
The next coordinate values along the first row of the image are represented as
(x, y)=(0, 1). It is important to keep in mind that the notation (0, 1) is used
to signify the second sample along the first row. It does not mean that these are
the actual values of physical coordinates when the image was sampled. Figure
2.18 shows the coordinate convention used throughout this book.

a b
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Origin

0
0 1 2 3

1

2

3
.
.
.

.

.

. . .. . .

.
M-1

N-1

One pixel

x

y

f (x, y)

FIGURE 2.18
Coordinate
convention used
in this book to
represent digital
images.

The notation introduced in the preceding paragraph allows us to write the
complete M*N digital image in the following compact matrix form:

(2.4-1)

The right side of this equation is by definition a digital image. Each element of
this matrix array is called an image element, picture element, pixel, or pel. The
terms image and pixel will be used throughout the rest of our discussions to de-
note a digital image and its elements.

In some discussions, it is advantageous to use a more traditional matrix no-
tation to denote a digital image and its elements:

(2.4-2)

Clearly, aij=f(x=i, y=j)=f(i, j), so Eqs. (2.4-1) and (2.4-2) are identical
matrices.

Expressing sampling and quantization in more formal mathematical terms
can be useful at times. Let Z and R denote the set of real integers and the set
of real numbers, respectively. The sampling process may be viewed as parti-
tioning the xy plane into a grid, with the coordinates of the center of each grid
being a pair of elements from the Cartesian product Z2, which is the set of all
ordered pairs of elements Azi, zj B , with zi and zj being integers from Z. Hence,
f(x, y) is a digital image if (x, y) are integers from Z2 and f is a function that
assigns a gray-level value (that is, a real number from the set of real numbers,
R) to each distinct pair of coordinates (x, y). This functional assignment
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o
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o
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56 Chapter 2 � Digital Image Fundamentals

obviously is the quantization process described earlier. If the gray levels also are
integers (as usually is the case in this and subsequent chapters), Z replaces R,
and a digital image then becomes a 2-D function whose coordinates and am-
plitude values are integers.

This digitization process requires decisions about values for M, N, and for the
number, L, of discrete gray levels allowed for each pixel.There are no require-
ments on M and N, other than that they have to be positive integers. However,
due to processing, storage, and sampling hardware considerations, the number
of gray levels typically is an integer power of 2:

(2.4-3)

We assume that the discrete levels are equally spaced and that they are integers
in the interval [0, L-1]. Sometimes the range of values spanned by the gray
scale is called the dynamic range of an image, and we refer to images whose gray
levels span a significant portion of the gray scale as having a high dynamic range.
When an appreciable number of pixels exhibit this property, the image will have
high contrast. Conversely, an image with low dynamic range tends to have a dull,
washed out gray look. This is discussed in much more detail in Section 3.3.

The number, b, of bits required to store a digitized image is

b=M*N*k. (2.4-4)

When M=N, this equation becomes

(2.4-5)

Table 2.1 shows the number of bits required to store square images with vari-
ous values of N and k. The number of gray levels corresponding to each value
of k is shown in parentheses. When an image can have 2k gray levels, it is com-
mon practice to refer to the image as a “k-bit image.” For example, an image with
256 possible gray-level values is called an 8-bit image. Note that storage re-
quirements for 8-bit images of size 1024*1024 and higher are not insignificant.

b = N2k.

L = 2k.

1 (L � 2) 2 (L � 4) 3 (L � 8) 4 (L � 16) 5 (L � 32) 6 (L � 64) 7 (L � 128) 8 (L � 256)

32 1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192

64 4,096 8,192 12,288 16,384 20,480 24,576 28,672 32,768

128 16,384 32,768 49,152 65,536 81,920 98,304 114,688 131,072

256 65,536 131,072 196,608 262,144 327,680 393,216 458,752 524,288

512 262,144 524,288 786,432 1,048,576 1,310,720 1,572,864 1,835,008 2,097,152

1024 1,048,576 2,097,152 3,145,728 4,194,304 5,242,880 6,291,456 7,340,032 8,388,608

2048 4,194,304 8,388,608 12,582,912 16,777,216 20,971,520 25,165,824 29,369,128 33,554,432

4096 16,777,216 33,554,432 50,331,648 67,108,864 83,886,080 100,663,296 117,440,512 134,217,728

8192 67,108,864 134,217,728 201,326,592 268,435,456 335,544,320 402,653,184 469,762,048 536,870,912

N /k

TABLE 2.1
Number of storage bits for various values of N and k.
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2.4.3 Spatial and Gray-Level Resolution
Sampling is the principal factor determining the spatial resolution of an image. Ba-
sically, spatial resolution is the smallest discernible detail in an image. Suppose that
we construct a chart with vertical lines of width W,with the space between the lines
also having width W. A line pair consists of one such line and its adjacent space.
Thus, the width of a line pair is 2W, and there are 1/2W line pairs per unit distance.
A widely used definition of resolution is simply the smallest number of discernible
line pairs per unit distance; for example, 100 line pairs per millimeter.

Gray-level resolution similarly refers to the smallest discernible change in
gray level, but, as noted in Section 2.1.3, measuring discernible changes in gray
level is a highly subjective process. We have considerable discretion regarding
the number of samples used to generate a digital image, but this is not true for
the number of gray levels. Due to hardware considerations, the number of gray
levels is usually an integer power of 2, as mentioned in the previous section.
The most common number is 8 bits, with 16 bits being used in some applica-
tions where enhancement of specific gray-level ranges is necessary. Sometimes
we find systems that can digitize the gray levels of an image with 10 or 12 bits
of accuracy, but these are the exception rather than the rule.

When an actual measure of physical resolution relating pixels and the level
of detail they resolve in the original scene are not necessary, it is not uncommon
to refer to an L-level digital image of size M*N as having a spatial resolution
of M*N pixels and a gray-level resolution of L levels.We will use this termi-
nology from time to time in subsequent discussions, making a reference to ac-
tual resolvable detail only when necessary for clarity.

� Figure 2.19 shows an image of size 1024*1024 pixels whose gray levels are
represented by 8 bits. The other images shown in Fig. 2.19 are the results of
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1024

512

256

128

64
32

FIGURE 2.19 A 1024*1024, 8-bit image subsampled down to size 32*32 pixels. The number of allowable
gray levels was kept at 256.

EXAMPLE 2.2:
Typical effects of
varying the
number of
samples in a
digital image.
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58 Chapter 2 � Digital Image Fundamentals

subsampling the 1024*1024 image. The subsampling was accomplished by
deleting the appropriate number of rows and columns from the original image.
For example, the 512*512 image was obtained by deleting every other row and
column from the 1024*1024 image. The 256*256 image was generated by
deleting every other row and column in the 512*512 image, and so on. The
number of allowed gray levels was kept at 256.

These images show the dimensional proportions between various sampling
densities, but their size differences make it difficult to see the effects resulting
from a reduction in the number of samples.The simplest way to compare these
effects is to bring all the subsampled images up to size 1024*1024 by row and
column pixel replication.The results are shown in Figs. 2.20(b) through (f). Fig-
ure 2.20(a) is the same 1024*1024, 256-level image shown in Fig. 2.19; it is re-
peated to facilitate comparisons.

Compare Fig. 2.20(a) with the 512*512 image in Fig. 2.20(b) and note that
it is virtually impossible to tell these two images apart. The level of detail lost
is simply too fine to be seen on the printed page at the scale in which these im-

FIGURE 2.20 (a) 1024*1024, 8-bit image. (b) 512*512 image resampled into 1024*1024 pixels by row and
column duplication. (c) through (f) 256*256, 128*128, 64*64, and 32*32 images resampled into
1024*1024 pixels.

a b c
d e f
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2.4 � Image Sampling and Quantization 59

ages are shown. Next, the 256*256 image in Fig. 2.20(c) shows a very slight fine
checkerboard pattern in the borders between flower petals and the black back-
ground. A slightly more pronounced graininess throughout the image also is
beginning to appear.These effects are much more visible in the 128*128 image
in Fig. 2.20(d), and they become pronounced in the 64*64 and 32*32 images
in Figs. 2.20(e) and (f), respectively. �

� In this example, we keep the number of samples constant and reduce the num-
ber of gray levels from 256 to 2, in integer powers of 2.Figure 2.21(a) is a 452*374
CAT projection image, displayed with k=8 (256 gray levels). Images such as this
are obtained by fixing the X-ray source in one position, thus producing a 2-D image

EXAMPLE 2.3:
Typical effects of
varying the
number of gray
levels in a digital
image.

FIGURE 2.21
(a) 452*374,
256-level image.
(b)–(d) Image
displayed in 128,
64, and 32 gray
levels, while
keeping the
spatial resolution
constant.

a b
c d

GONZ02-034-074.II  29-08-2001  13:36  Page 59



60 Chapter 2 � Digital Image Fundamentals

in any desired direction. Projection images are used as guides to set up the para-
meters for a CAT scanner, including tilt, number of slices, and range.

Figures 2.21(b) through (h) were obtained by reducing the number of bits
from k=7 to k=1 while keeping the spatial resolution constant at 452*374
pixels. The 256-, 128-, and 64-level images are visually identical for all practical
purposes.The 32-level image shown in Fig. 2.21(d), however, has an almost im-
perceptible set of very fine ridgelike structures in areas of smooth gray levels
(particularly in the skull).This effect, caused by the use of an insufficient num-
ber of gray levels in smooth areas of a digital image, is called false contouring,
so called because the ridges resemble topographic contours in a map. False con-
touring generally is quite visible in images displayed using 16 or less uniform-
ly spaced gray levels, as the images in Figs. 2.21(e) through (h) show.

FIGURE 2.21
(Continued)
(e)–(g) Image
displayed in 16, 8,
4, and 2 gray
levels. (Original
courtesy of
Dr. David
R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

e f
g h

GONZ02-034-074.II  29-08-2001  13:36  Page 60



2.4 � Image Sampling and Quantization 61

As a very rough rule of thumb, and assuming powers of 2 for convenience,
images of size 256*256 pixels and 64 gray levels are about the smallest images
that can be expected to be reasonably free of objectionable sampling checker-
boards and false contouring. �

The results in Examples 2.2 and 2.3 illustrate the effects produced on image
quality by varying N and k independently. However, these results only partially
answer the question of how varying N and k affect images because we have not
considered yet any relationships that might exist between these two parameters.
An early study by Huang [1965] attempted to quantify experimentally the ef-
fects on image quality produced by varying N and k simultaneously.The exper-
iment consisted of a set of subjective tests. Images similar to those shown in
Fig. 2.22 were used.The woman’s face is representative of an image with relatively
little detail; the picture of the cameraman contains an intermediate amount of
detail; and the crowd picture contains, by comparison, a large amount of detail.

Sets of these three types of images were generated by varying N and k, and
observers were then asked to rank them according to their subjective quality.
Results were summarized in the form of so-called isopreference curves in the
Nk-plane (Fig. 2.23 shows average isopreference curves representative of curves
corresponding to the images shown in Fig. 2.22). Each point in the Nk-plane rep-
resents an image having values of N and k equal to the coordinates of that point.
Points lying on an isopreference curve correspond to images of equal subjective
quality. It was found in the course of the experiments that the isopreference
curves tended to shift right and upward, but their shapes in each of the three
image categories were similar to those shown in Fig. 2.23. This is not unexpect-
ed, since a shift up and right in the curves simply means larger values for N and
k, which implies better picture quality.

The key point of interest in the context of the present discussion is that iso-
preference curves tend to become more vertical as the detail in the image in-
creases. This result suggests that for images with a large amount of detail only

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a rel-
atively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

a b c
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FIGURE 2.23
Representative
isopreference
curves for the
three types of
images in
Fig. 2.22.

a few gray levels may be needed. For example, the isopreference curve in
Fig. 2.23 corresponding to the crowd is nearly vertical.This indicates that, for a
fixed value of N, the perceived quality for this type of image is nearly indepen-
dent of the number of gray levels used (for the range of gray levels shown in
Fig. 2.23). It is also of interest to note that perceived quality in the other two
image categories remained the same in some intervals in which the spatial res-
olution was increased, but the number of gray levels actually decreased. The
most likely reason for this result is that a decrease in k tends to increase the ap-
parent contrast of an image, a visual effect that humans often perceive as im-
proved quality in an image.

2.4.4 Aliasing and Moiré Patterns
As discussed in more detail in Chapter 4, functions whose area under the curve
is finite can be represented in terms of sines and cosines of various frequencies.
The sine/cosine component with the highest frequency determines the highest
“frequency content” of the function. Suppose that this highest frequency is fi-
nite and that the function is of unlimited duration (these functions are called
band-limited functions).Then, the Shannon sampling theorem [Bracewell (1995)]
tells us that, if the function is sampled at a rate equal to or greater than twice
its highest frequency, it is possible to recover completely the original function
from its samples. If the function is undersampled, then a phenomenon called
aliasing corrupts the sampled image. The corruption is in the form of addition-
al frequency components being introduced into the sampled function. These
are called aliased frequencies. Note that the sampling rate in images is the num-
ber of samples taken (in both spatial directions) per unit distance.

As it turns out, except for a special case discussed in the following paragraph,
it is impossible to satisfy the sampling theorem in practice.We can only work with
sampled data that are finite in duration. We can model the process of convert-
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2.4 � Image Sampling and Quantization 63

ing a function of unlimited duration into a function of finite duration simply by
multiplying the unlimited function by a “gating function” that is valued 1 for
some interval and 0 elsewhere. Unfortunately, this function itself has frequen-
cy components that extend to infinity.Thus, the very act of limiting the duration
of a band-limited function causes it to cease being band limited, which causes
it to violate the key condition of the sampling theorem.The principal approach
for reducing the aliasing effects on an image is to reduce its high-frequency com-
ponents by blurring the image (we discuss blurring in detail in Chapter 4) prior
to sampling. However, aliasing is always present in a sampled image.The effect
of aliased frequencies can be seen under the right conditions in the form of so-
called Moiré patterns†, as discussed next.

There is one special case of significant importance in which a function of in-
finite duration can be sampled over a finite interval without violating the sam-
pling theorem. When a function is periodic, it may be sampled at a rate equal
to or exceeding twice its highest frequency, and it is possible to recover the func-
tion from its samples provided that the sampling captures exactly an integer
number of periods of the function.This special case allows us to illustrate vivid-
ly the Moiré effect. Figure 2.24 shows two identical periodic patterns of equal-
ly spaced vertical bars, rotated in opposite directions and then superimposed on
each other by multiplying the two images.A Moiré pattern, caused by a break-
up of the periodicity, is seen in Fig. 2.24 as a 2-D sinusoidal (aliased) waveform
(which looks like a corrugated tin roof) running in a vertical direction. A simi-
lar pattern can appear when images are digitized (e.g., scanned) from a print-
ed page, which consists of periodic ink dots.

FIGURE 2.24 Illustration of the Moiré pattern effect.

† The word Moiré appears to have originated with weavers and comes from the word mohair, a cloth made
from Angora goat hairs.
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2.4.5 Zooming and Shrinking Digital Images
We conclude the treatment of sampling and quantization with a brief discussion
on how to zoom and shrink a digital image. This topic is related to image sam-
pling and quantization because zooming may be viewed as oversampling, while
shrinking may be viewed as undersampling. The key difference between these
two operations and sampling and quantizing an original continuous image is
that zooming and shrinking are applied to a digital image.

Zooming requires two steps: the creation of new pixel locations, and the
assignment of gray levels to those new locations. Let us start with a simple ex-
ample. Suppose that we have an image of size 500*500 pixels and we want
to enlarge it 1.5 times to 750*750 pixels. Conceptually, one of the easiest
ways to visualize zooming is laying an imaginary 750*750 grid over the orig-
inal image. Obviously, the spacing in the grid would be less than one pixel be-
cause we are fitting it over a smaller image. In order to perform gray-level
assignment for any point in the overlay, we look for the closest pixel in the
original image and assign its gray level to the new pixel in the grid. When we
are done with all points in the overlay grid, we simply expand it to the origi-
nal specified size to obtain the zoomed image. This method of gray-level as-
signment is called nearest neighbor interpolation. (Pixel neighborhoods are
discussed in the next section.)

Pixel replication, the method used to generate Figs. 2.20(b) through (f), is a
special case of nearest neighbor interpolation. Pixel replication is applicable
when we want to increase the size of an image an integer number of times. For
instance, to double the size of an image, we can duplicate each column. This
doubles the image size in the horizontal direction.Then, we duplicate each row
of the enlarged image to double the size in the vertical direction.The same pro-
cedure is used to enlarge the image by any integer number of times (triple,
quadruple, and so on). Duplication is just done the required number of times to
achieve the desired size. The gray-level assignment of each pixel is predeter-
mined by the fact that new locations are exact duplicates of old locations.

Although nearest neighbor interpolation is fast, it has the undesirable feature
that it produces a checkerboard effect that is particularly objectionable at high
factors of magnification. Figures 2.20(e) and (f) are good examples of this. A
slightly more sophisticated way of accomplishing gray-level assignments is
bilinear interpolation using the four nearest neighbors of a point. Let (x¿, y¿)
denote the coordinates of a point in the zoomed image (think of it as a point on
the grid described previously), and let v(x¿, y¿) denote the gray level assigned
to it. For bilinear interpolation, the assigned gray level is given by

(2.4-6)

where the four coefficients are determined from the four equations in four un-
knowns that can be written using the four nearest neighbors of point (x¿, y¿).

Image shrinking is done in a similar manner as just described for zooming.The
equivalent process of pixel replication is row-column deletion.For example,to shrink
an image by one-half,we delete every other row and column.We can use the zoom-
ing grid analogy to visualize the concept of shrinking by a noninteger factor,except

v(x¿, y¿) = ax¿ + by¿ + cx¿y¿ + d
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that we now expand the grid to fit over the original image, do gray-level nearest
neighbor or bilinear interpolation,and then shrink the grid back to its original spec-
ified size.To reduce possible aliasing effects, it is a good idea to blur an image slight-
ly before shrinking it. Blurring of digital images is discussed in Chapters 3 and 4.

It is possible to use more neighbors for interpolation. Using more neighbors
implies fitting the points with a more complex surface, which generally gives
smoother results.This is an exceptionally important consideration in image gen-
eration for 3-D graphics [Watt (1993)] and in medical image processing
[Lehmann et al. (1999)], but the extra computational burden seldom is justifi-
able for general-purpose digital image zooming and shrinking, where bilinear
interpolation generally is the method of choice.

� Figures 2.20(d) through (f) are shown again in the top row of Fig. 2.25. As
noted earlier, these images were zoomed from 128*128, 64*64, and 32*32
to 1024*1024 pixels using nearest neighbor interpolation. The equivalent re-
sults using bilinear interpolation are shown in the second row of Fig. 2.25. The
improvements in overall appearance are clear, especially in the 128*128 and

FIGURE 2.25 Top row: images zoomed from 128*128, 64*64, and 32*32 pixels to 1024*1024 pixels,
using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

a b c
d e f

EXAMPLE 2.4:
Image zooming
using bilinear
interpolation.
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64*64 cases.The 32*32 to 1024*1024 image is blurry, but keep in mind that
this image was zoomed by a factor of 32. In spite of this, the result of bilinear
interpolation shown in Fig. 2.25(f) is a reasonably good rendition of the origi-
nal image shape, something that is lost in Fig. 2.25(c). �

Some Basic Relationships Between Pixels

In this section, we consider several important relationships between pixels in a
digital image.As mentioned before, an image is denoted by f(x, y).When refer-
ring in this section to a particular pixel, we use lowercase letters, such as p and q.

2.5.1 Neighbors of a Pixel
A pixel p at coordinates (x, y) has four horizontal and vertical neighbors whose
coordinates are given by

(x+1, y), (x-1, y), (x, y+1), (x, y-1)

This set of pixels, called the 4-neighbors of p, is denoted by N4(p). Each pixel
is a unit distance from (x, y), and some of the neighbors of p lie outside the
digital image if (x, y) is on the border of the image.

The four diagonal neighbors of p have coordinates

(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)

and are denoted by ND(p). These points, together with the 4-neighbors, are
called the 8-neighbors of p, denoted by N8(p).As before, some of the points in
ND(p) and N8(p) fall outside the image if (x, y) is on the border of the image.

2.5.2 Adjacency, Connectivity, Regions, and Boundaries
Connectivity between pixels is a fundamental concept that simplifies the defini-
tion of numerous digital image concepts, such as regions and boundaries. To es-
tablish if two pixels are connected, it must be determined if they are neighbors and
if their gray levels satisfy a specified criterion of similarity (say, if their gray lev-
els are equal). For instance, in a binary image with values 0 and 1, two pixels may
be 4-neighbors, but they are said to be connected only if they have the same value.

Let V be the set of gray-level values used to define adjacency. In a binary
image, V={1} if we are referring to adjacency of pixels with value 1. In a gray-
scale image, the idea is the same, but set V typically contains more elements. For
example, in the adjacency of pixels with a range of possible gray-level values 0
to 255, set V could be any subset of these 256 values. We consider three types
of adjacency:

(a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is
in the set N4(p).

(b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is
in the set N8(p).

2.5
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(c) m-adjacency (mixed adjacency).Two pixels p and q with values from V are
m-adjacent if

(i) q is in N4(p), or
(ii) q is in ND(p) and the set has no pixels whose values

are from V.

Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate
the ambiguities that often arise when 8-adjacency is used. For example, consid-
er the pixel arrangement shown in Fig. 2.26(a) for V={1}.The three pixels at
the top of Fig. 2.26(b) show multiple (ambiguous) 8-adjacency, as indicated by
the dashed lines. This ambiguity is removed by using m-adjacency, as shown in
Fig. 2.26(c). Two image subsets S1 and S2 are adjacent if some pixel in S1 is ad-
jacent to some pixel in S2. It is understood here and in the following definitions
that adjacent means 4-, 8-, or m-adjacent.

A (digital) path (or curve) from pixel p with coordinates (x, y) to pixel q
with coordinates (s, t) is a sequence of distinct pixels with coordinates

where and pixels and are
adjacent for 1 � i � n. In this case, n is the length of the path. If

the path is a closed path.We can define 4-, 8-, or m-paths de-
pending on the type of adjacency specified. For example, the paths shown in
Fig. 2.26(b) between the northeast and southeast points are 8-paths, and the
path in Fig. 2.26(c) is an m-path. Note the absence of ambiguity in the m-path.

Let S represent a subset of pixels in an image.Two pixels p and q are said to
be connected in S if there exists a path between them consisting entirely of pix-
els in S. For any pixel p in S, the set of pixels that are connected to it in S is
called a connected component of S. If it only has one connected component,
then set S is called a connected set.

Let R be a subset of pixels in an image. We call R a region of the image if R
is a connected set. The boundary (also called border or contour) of a region R
is the set of pixels in the region that have one or more neighbors that are not
in R. If R happens to be an entire image (which we recall is a rectangular set of
pixels), then its boundary is defined as the set of pixels in the first and last rows
and columns of the image.This extra definition is required because an image has
no neighbors beyond its border. Normally, when we refer to a region, we are

Ax0 , y0B = (xn , yn),

Axi - 1 , yi - 1BAxi , yiBAxn , ynB = (s, t),Ax0 , y0B = (x, y),

Ax0 , y0B, Ax1 , y1B, p , Axn , ynB

N4(p) ¨ N4(q)

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

FIGURE 2.26 (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed)
to the center pixel; (c) m-adjacency.

a b c
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68 Chapter 2 � Digital Image Fundamentals

referring to a subset of an image, and any pixels in the boundary of the region
that happen to coincide with the border of the image are included implicitly as
part of the region boundary.

The concept of an edge is found frequently in discussions dealing with re-
gions and boundaries. There is a key difference between these concepts, how-
ever.The boundary of a finite region forms a closed path (Problem 2.14) and is
thus a “global” concept.As discussed in detail in Chapter 10, edges are formed
from pixels with derivative values that exceed a preset threshold.Thus, the idea
of an edge is a “local” concept that is based on a measure of gray-level discon-
tinuity at a point. It is possible to link edge points into edge segments, and some-
times these segments are linked in such a way that correspond to boundaries,
but this is not always the case.The one exception in which edges and boundaries
correspond is in binary images. Depending on the type of connectivity and edge
operators used (we discuss these in Chapter 10), the edge extracted from a bi-
nary region will be the same as the region boundary. This is intuitive. Concep-
tually, until we arrive at Chapter 10, it is helpful to think of edges as intensity
discontinuities and boundaries as closed paths.

2.5.3 Distance Measures
For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D
is a distance function or metric if

(a) D(p, q) � 0 AD(p, q)=0 iff p=q B ,
(b) D(p, q)=D(q, p), and
(c) D(p, z) � D(p, q)+D(q, z).

The Euclidean distance between p and q is defined as

(2.5-1)

For this distance measure, the pixels having a distance less than or equal to some
value r from (x, y) are the points contained in a disk of radius r centered at (x, y).

The D4 distance (also called city-block distance) between p and q is defined as

(2.5-2)

In this case, the pixels having a D4 distance from (x, y) less than or equal to
some value r form a diamond centered at (x, y). For example, the pixels with
D4 distance �2 from (x, y) (the center point) form the following contours of
constant distance:

The pixels with D4=1 are the 4-neighbors of (x, y).
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The D8 distance (also called chessboard distance) between p and q is defined as

(2.5-3)

In this case, the pixels with D8 distance from (x, y) less than or equal to some value
r form a square centered at (x, y). For example, the pixels with D8 distance �2
from (x, y) (the center point) form the following contours of constant distance:

The pixels with D8=1 are the 8-neighbors of (x, y).
Note that the D4 and D8 distances between p and q are independent of any

paths that might exist between the points because these distances involve only
the coordinates of the points. If we elect to consider m-adjacency, however, the
Dm distance between two points is defined as the shortest m-path between the
points. In this case, the distance between two pixels will depend on the values
of the pixels along the path, as well as the values of their neighbors. For in-
stance, consider the following arrangement of pixels and assume that p, p2 , and
p4 have value 1 and that p1 and p3 can have a value of 0 or 1:

Suppose that we consider adjacency of pixels valued 1 (i.e., V={1}). If p1 and
p3 are 0, the length of the shortest m-path (the Dm distance) between p and p4

is 2. If p1 is 1, then p2 and p will no longer be m-adjacent (see the definition of
m-adjacency) and the length of the shortest m-path becomes 3 (the path goes
through the points ). Similar comments apply if p3 is 1 (and p1 is 0); in
this case, the length of the shortest m-path also is 3. Finally, if both p1 and p3 are
1 the length of the shortest m-path between p and p4 is 4. In this case, the path
goes through the sequence of points 

2.5.4 Image Operations on a Pixel Basis
Numerous references are made in the following chapters to operations between
images, such as dividing one image by another. In Eq. (2.4-2), images were rep-
resented in the form of matrices. As we know, matrix division is not defined.
However, when we refer to an operation like “dividing one image by another,”
we mean specifically that the division is carried out between corresponding pix-
els in the two images.Thus, for example, if f and g are images, the first element
of the image formed by “dividing” f by g is simply the first pixel in f divided
by the first pixel in g; of course, the assumption is that none of the pixels in g
have value 0. Other arithmetic and logic operations are similarly defined be-
tween corresponding pixels in the images involved.

pp1 p2 p3 p4 .
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D8(p, q) = max A∑x - s∑, ∑y - t∑B.
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70 Chapter 2 � Digital Image Fundamentals

Linear and Nonlinear Operations

Let H be an operator whose input and output are images. H is said to be a linear
operator if, for any two images f and g and any two scalars a and b,

(2.6-1)

In other words, the result of applying a linear operator to the sum of two images
(that have been multiplied by the constants shown) is identical to applying the
operator to the images individually, multiplying the results by the appropriate
constants, and then adding those results. For example, an operator whose func-
tion is to compute the sum of K images is a linear operator. An operator that
computes the absolute value of the difference of two images is not. An opera-
tor that fails the test of Eq. (2.6-1) is by definition nonlinear.

Linear operations are exceptionally important in image processing because
they are based on a significant body of well-understood theoretical and practi-
cal results.Although nonlinear operations sometimes offer better performance,
they are not always predictable, and for the most part are not well understood
theoretically.

Summary
The material in this chapter is primarily background information for subsequent dis-
cussions. Our treatment of the human visual system, although brief, provides a basic idea
of the capabilities of the eye in perceiving pictorial information. The discussion of light
and the electromagnetic spectrum is fundamental in understanding the origin of the
many images we use in this book. Similarly, the image model developed in Section 2.3.4
is used in the Chapter 4 as the basis for an image enhancement technique called homo-
morphic filtering, and again in Chapter 10 to explain the effect of illumination on the
shape of image histograms.

The sampling ideas introduced in Section 2.4 are the foundation for many of the dig-
itizing phenomena likely to be encountered in practice. These ideas can be expanded
further once a basic understanding of frequency content is mastered.A detailed discus-
sion of the frequency domain is given in Chapter 4. The concepts of sampling and alias-
ing effects also are of importance in the context of image acquisition.

The concepts introduced in Section 2.5 are the basic building blocks for processing
techniques based on pixel neighborhoods. As shown in the following chapter and in
Chapter 5, neighborhood processing methods are at the core of many image enhance-
ment and restoration procedures.When applicable, neighborhood processing is favored
in commercial applications of image processing due to their operational speed and sim-
plicity of implementation in hardware and/or firmware. Finally, the concept of a linear
operator and the theoretical and conceptual power associated with it will be used ex-
tensively in the following three chapters.

References and Further Reading
Additional reading for the material in Section 2.1 regarding the structure of the human
eye may be found in Atchison and Smith [2000], and Oyster [1999]. For additional read-
ing on visual perception, see Regan [2000] and Gordon [1997].The book by Hubel [1988]
and the now classic book by Cornsweet [1970] also are of interest. Born and Wolf [1999]

H(af + bg) = aH(f) + bH(g).

2.6
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is a basic reference that discusses light in terms of electromagnetic theory. Electromag-
netic energy propagation is covered in some detail by Felsen and Marcuvitz [1994].

The area of image sensing is quite broad and very fast moving. An excellent source
of information on optical and other imaging sensors is the International Society for Op-
tical Engineering (SPIE). The following are representative publications by the SPIE in
this area: Blouke et al. [2001], Hoover and Doty [1996], and Freeman [1987].

The image model presented in Section 2.3.4 is from Oppenheim, Schafer, and Stock-
ham [1968].A reference for the illumination and reflectance values used in that section
is the IES Lighting Handbook [2000]. For additional reading on image sampling and
some of its effects, such as aliasing, see Bracewell [1995]. The early experiments men-
tioned in Section 2.4.3 on perceived image quality as a function of sampling and quati-
zation were reported by Huang [1965].The issue of reducing the number of samples and
gray levels in an image while minimizing the ensuing degradation is still of current in-
terest, as exemplified by Papamarkos and Atsalakis [2000]. For further reading on image
shrinking and zooming, see Sid-Ahmed [1995], Unser et al. [1995], Umbaugh [1998], and
Lehmann et al. [1999]. For further reading on the topics covered in Section 2.5, see
Rosenfeld and Kak [1982], Marchand-Maillet and Sharaiha [2000], and Ritter and Wil-
son [2001].Additional reading on linear systems in the context of image processing may
be found in Castleman [1996].

Problems
2.1 Using the background information provided in Section 2.1, and thinking purely

in geometric terms, estimate the diameter of the smallest printed dot that the eye
can discern if the page on which the dot is printed is 0.2 m away from the eyes.
Assume for simplicity that the visual system ceases to detect the dot when the
image of the dot on the fovea becomes smaller than the diameter of one recep-
tor (cone) in that area of the retina. Assume further that the fovea can be mod-
eled as a square array of dimensions 1.5 mm*1.5 mm, and that the cones and
spaces between the cones are distributed uniformly throughout this array.

2.2 When you enter a dark theater on a bright day, it takes an appreciable interval
of time before you can see well enough to find an empty seat. Which of the visu-
al processes explained in Section 2.1 is at play in this situation?

2.3 Although it is not shown in Fig. 2.10, alternating current certainly is part of the
electromagnetic spectrum. Commercial alternating current in the United States
has a frequency of 60 Hz.What is the wavelength in kilometers of this component
of the spectrum?

2.4 You are hired to design the front end of an imaging system for studying the bound-
ary shapes of cells, bacteria, viruses, and protein.The front end consists, in this case,
of the illumination source(s) and corresponding imaging camera(s). The diame-
ters of circles required to enclose individual specimens in each of these categories
are 50, 1, 0.1, and 0.01 �m, respectively.

(a) Can you solve the imaging aspects of this problem with a single sensor and
camera? If your answer is yes, specify the illumination wavelength band and
the type of camera needed. Identify the camera as being a color camera, far-
infrared camera, or whatever appropriate name corresponds to the illumi-
nation source.

(b) If your answer in (a) is no, what type of illumination sources and corre-
sponding imaging sensors would you recommend? Specify the light sources

Detailed solutions to the
problems marked with a
star can be found in the
book web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.

See inside front cover
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and cameras as requested in part (a). Use the minimum number of illumina-
tion sources and cameras needed to solve the problem.

2.5 A CCD camera chip of dimensions 7*7 mm, and having 1024*1024 elements,
is focused on a square, flat area, located 0.5 m away. How many line pairs per mm
will this camera be able to resolve? The camera is equipped with a 35-mm lens.
(Hint: Model the imaging process as in Fig. 2.3, with the focal length of the cam-
era lens substituting for the focal length of the eye.)

2.6 An automobile manufacturer is automating the placement of certain components
on the bumpers of a limited-edition line of sports cars.The components are color
coordinated, so the robots need to know the color of each car in order to select the
appropriate bumper component. Models come in only four colors: blue, green, red,
and white.You are hired to propose a solution based on imaging. How would you
solve the problem of automatically determining the color of each car, keeping in
mind that cost is the most important consideration in your choice of components?

2.7 Suppose that a flat area with center at is illuminated by a light source with
intensity distribution

Assume for simplicity that the reflectance of the area is constant and equal to
1.0, and let K=255. If the resulting image is digitized with k bits of intensity res-
olution, and the eye can detect an abrupt change of eight shades of intensity be-
tween adjacent pixels, what value of k will cause visible false contouring?

2.8 Sketch the image in Problem 2.7 for k=2.

2.9 A common measure of transmission for digital data is the baud rate, defined as
the number of bits transmitted per second. Generally, transmission is accom-
plished in packets consisting of a start bit, a byte (8 bits) of information, and a stop
bit. Using these facts, answer the following:

(a) How many minutes would it take to transmit a 1024*1024 image with 256
gray levels using a 56K baud modem?

(b) What would the time be at 750K baud, a representative speed of a phone
DSL (digital subscriber line) connection?

2.10 High-definition television (HDTV) generates images with a resolution of 1125
horizontal TV lines interlaced (where every other line is painted on the tube face
in each of two fields, each field being 1�60th of a second in duration).The width-
to-height aspect ratio of the images is 16 :9. The fact that the horizontal lines are
distinct fixes the vertical resolution of the images. A company has designed an
image capture system that generates digital images from HDTV images.The res-
olution of each TV (horizontal) line in their system is in proportion to vertical res-
olution, with the proportion being the width-to-height ratio of the images. Each
pixel in the color image has 24 bits of intensity resolution, 8 pixels each for a red,
a green, and a blue image.These three “primary” images form a color image. How
many bits would it take to store a 2-hour HDTV program?

2.11 Consider the two image subsets, S1 and S2, shown in the following figure. For
V={1}, determine whether these two subsets are (a) 4-adjacent, (b) 8-adjacent,
or (c) m-adjacent.

i(x, y) = Ke-CAx - x0B
2 + Ay - y0B

2
D.

Ax0 , y0B

� 
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2.12 Develop an algorithm for converting a one-pixel-thick 8-path to a 4-path.

2.13 Develop an algorithm for converting a one-pixel-thick m-path to a 4-path.

2.14 Show that the boundary of the region, as defined in Section 2.5.2, is a closed path.

2.15 Consider the image segment shown.

(a) Let V={0, 1} and compute the lengths of the shortest 4-, 8-, and m-path be-
tween p and q. If a particular path does not exist between these two points,
explain why.

(b) Repeat for V={1, 2}.

2.16 (a) Give the condition(s) under which the D4 distance between two points p and
q is equal to the shortest 4-path between these points.

(b) Is this path unique?

2.17 Repeat Problem 2.16 for the D8 distance.

2.18 In the following chapter, we will deal with operators whose function is to com-
pute the sum of pixel values in a small subimage area, S. Show that these are lin-
ear operators.

2.19 The median, z, of a set of numbers is such that half the values in the set are below
z and the other half are above it. For example, the median of the set of values
{2, 3, 8, 20, 21, 25, 31} is 20. Show that an operator that computes the median of
a subimage area, S, is nonlinear.

2.20 A plant produces a line of translucent miniature polymer squares. Stringent qual-
ity requirements dictate 100% visual inspection, and the plant manager finds the use
of human inspectors increasingly expensive. Inspection is semiautomated.At each
inspection station, a robotic mechanism places each polymer square over a light
located under an optical system that produces a magnified image of the square.
The image completely fills a viewing screen measuring 80*80 mm. Defects appear
as dark circular blobs, and the inspector’s job is to look at the screen and reject any
sample that has one or more such dark blobs with a diameter of 0.8 mm or larger,
as measured on the scale of the screen. The manager believes that, if she can find
a way to automate the process completely, she will increase profits by 50%. She
also believes that success in this project will aid her climb up the corporate ladder.
After much investigation, the manager decides that the way to solve the problem
is to view each inspection screen with a CCD TV camera and feed the output of the
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camera into an image processing system capable of detecting the blobs, measuring
their diameter, and activating the accept/reject buttons previously operated by an
inspector. She is able to find a system that can do the job, as long as the smallest de-
fect occupies an area of at least 2*2 pixels in the digital image.The manager hires
you to help her specify the camera and lens system, but requires that you use off-
the-shelf components. For the lenses, assume that this constraint means any integer
multiple of 25 mm or 35 mm, up to 200 mm. For the cameras, it means resolutions
of 512*512, 1024*1024, or 2048*2048 pixels.The individual imaging elements
in these cameras are squares measuring 8*8 �m, and the spaces between imag-
ing elements are 2 �m. For this application, the cameras cost much more than the
lenses, so the problem should be solved with the lowest-resolution camera possible,
based on the choice of lenses.As a consultant, you are to provide a written recom-
mendation, showing in reasonable detail the analysis that led to your conclusion.
Use the same imaging geometry suggested in Problem 2.5.
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