Constrained Random Boolean Models

Mixture: 3 and 4 Sided Polyhedrons Mixture: 3 Sided Polyhedrons and Ellipses

Granulometries

- Granulometries model parameterized sieving process on random sets;
- The most common granulometry is of the form:

$$\Psi_t(S) = \bigcup_{B \in \mathcal{G}} S \circ tB$$

where \mathcal{G} is composed of convex structuring elements.

Original Image t = 19

$$t = 19$$

$$t = 31$$

Structuring Elements

The following structuring elements are used for feature extraction:

Size Distribution

- For a compact set S, we define the *size distribution* as $\Omega(t) = \nu[S] \nu[\Psi_t(S)].$
- Ω measures the area removed by Ψ_t .
- Ω is an increasing function.
- $\Omega(0) = 0$ and $\Omega(t) = \nu[S]$ for sufficiently large t.

Pattern Spectrum

- The pattern spectrum, which is a random function, is defined by $\Phi(t) = \Omega(t)/\nu[S] = 1 \nu[\Psi_t(S)]/\nu[S]$.
- $\Phi(t)$ is a probability distribution with moments being random variables.

Granulometries

- Morphological granulometry and its size distribution moments are good quantitative shape descriptors (Matheron 75, Serra 82);
- They are successfully used to classify image texture in binary and gray-scale images (Dougherty 92, Chen 94);

Problem Overview

Feature Selection Problem

Feature Selection Problem

