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��Chap 1. INTRODUCTION

This introductory chapter deals with the different applications (along with their constraints) that could benefit from the face recognition techniques. The stages which are performed by any face recognisor are presented.

1.1 Applications and Constraints

The applications of Face Recognition Techniques (FRT) can be broadly subdivided into commercial and law enforcement applications. A list detailing the applications along with their constraints is shown at the table 1.1.

�Applications�Advantages�Disadvantages��1a.
�Credit card, driver’s license, passport, and personnal identification�Controlled image
Controlled segmentation
Good quality images�No existing database
Large potential database
Rare search type��1b.�Mug shots matching�Mixed image quality
More than one image available�No existing database
Large potential database
Rare search type��2.�Bank / store security�High value
Geographically localised search�Uncontrolled segmentation
Low image quality��3.�Crowd surveillance�High value
Small file size
Availability of video images�Uncontrolled segmentation
Low image quality
Real-time��4.�Expert identification�High value
Enhancement possible�Low image quality
Legal certainty required��5.�Witness face reconstruction�Witness search limits�Unknown similarity��6.�Electronic mug shots book�Descriptor search limits�Viewer fatigue��7.�Electronic lineup�Descriptor search limits�Viewer fatigue��
Table 1.1 Applications and their constraints.

These applications can be broadly classified into two groups : Some applications’ input are still images while other are real time dynamic images. Even among these groups, significant differences exist, depending on the specific application. The differences are in terms of image quality, amount of background clutter, and the nature, type and amount of input from a human (as in application 4 and 5).
Application 1, 2, and 3 involve matching one face image to another face image. Applications 4-7 invlove finding or creating a face image which is similar to the human recollection of a face. Each of these applications imposes different requirements on the recognition process. Matching requires that the candidate matching face image be in some set of face images selected by the system. Similarity detection requires, in addition to matching, that images of faces be found which are similar to a recalled face; this requires that the similarity measure used by the recognition system closely match the similarity measures used by humans.
This project deals with still images which could come from a passport picture (application 1a).

The applications listed above are engineering problems. However, the engineers are not the only one who investigate FRT. In fact, Psychophysicist and Neuroscientist also conduct research into this field. Their purpose is to understand the visual part of the human brain. One of their valuable technique, Principal Components Analysis (PCA), also known as the Karhunen-Loeve transform, is the topic of this project.

�1.2 Three Stages

A general statement of the problem can be formulated as follows : Given still or video images of a scene, identify one or more persons in the scene using a stored database of faces. The solution of the general problem is subdivided into three different stages :

segmentation of scenes from cluttered scenes,
extraction of features from the face region,
decision.

The first stage, segmentation is usually achieved by the following algorithm. An edge map is constructed, then the edges are connected using several heuristics, and the edges are matched into an elliptical shape using a Hough transform. It should be noted that if the input is composed of video images, the segmentation can be achieved using the motion as a cue.

The critical stage is the extraction of the features. There are essentially two types of features : holistic features (where each feature is a characteristic of the whole face) and partial features (hair, nose, mouth eyes, etc.). Partial features techniques make some measurements onto many crucial points of the face, whereas holistic feature techniques deals always with the face as a whole. PCA is a holistic feature technique.

At the third stage a decision is taken from the data collected from the previous stage. Three type of decision can be achieved depending on the application :
identification, in which labels of individuals must be obtained, 
recognition of a person, where it must be decided if the individual has already been seen, and
 categorisation, in which the face must be assigned to a certain category.

Since the topic of this report is to test PCA, the first stage, face segmentation, will not be addressed. The second chapter details the theory of PCA. The core of the project, testing PCA, is covered into the third chapter. The implementation of the computer program which has been developed for this project is briefly described into the fourth chapter, while the user’s manual is given in the appendix.
��Chap 2. MATERIAL AND METHOD


2.1 Face viewed as a vector

A face, which is an image, can be viewed as a vector. If the image’s width and height are w and h pixels respectively, the number of components of this vector will be w*h. Each pixel is coded by one vector component. The construction of this vector from an image is performed by a simple concatenation - the rows of the image are placed each beside one another, as shown on the figure 2.1.

�
figure 2.1 formation of the face’s vector from the face’s image


2.2 Image Space

The face vector described in the previous section belongs to a space. This space is the image space, the space of all images whose dimension is w by h pixels. The basis of the image space is composed of the following vectors : 

� INCORPORER Paint.Picture  ���
figure 2.2 Image space’s basis

All the faces look like each other. They all have two eyes, a mouth, a nose, etc. located at the same place. Therefore, all the face vectors are located in a very narrow cluster in the image space, as shown in the figure 2.3.

�
figure 2.3 Image Space and face cluster

Hence, the full image space is not an optimal space for face description. The task presented here aims to build a face space which better describes the faces. The basis vectors of this face space are called the principal components.

The dimension of the image space is w*h. Of course, all the pixels of a face are not relevant, and each pixel depends on its neighbours. So, the dimension of the face space is less than the dimension of the image space. The dimension of the face space cannot be determined, but it is sure that it is to be far less than that of the image space.

The goal of the method presented here, Principal Components Analysis, is to reduce the dimension of a set or space so that the new basis better describes the typical ‘models’ of the set. In our case the ‘models’ are a set of training faces. The new basis will be constructed by linear combination. Components in this face space basis will be uncorrelated and will maximise the variance accounted for in the original variables. These properties are more easily understood when considering the example at the end of the chapter.

Principal Components Analysis aims to catch the total variation in the set of the training faces, and to explain this variation by a few variables. The fact that it reduces the dimension is important. In fact, an observation described by a few variables is easier to handle and easier to understand than if it was defined by a huge amount of variables. And when many observations, or faces, have to be processed the dimensionnality reduction is of first importance.

2.3 Theoretical Viewpoint

Principal Components Analysis was first developed by statisticians. Then it has been reformulated in an artificial neural network paradigm. So there are two ways to explain its principles. To gain an understanding of PCA, both these viewpoints should be considered, for they are complementary. PCA will be first explained in the artificial neural network (ANN) paradigm because it is more intuitive, whereas the statistical paradigm is more mathematically rigorous.

�2.4 Linear Auto-Associative Memory

2.4.1 Introduction

An auto-associative memory (AAM) is a kind of content addressable memory. It aims to yield a response which is the memorised key nearest to the input key. In our case, the term ‘key’ can be considered as being a face.

The linear auto-associative memory (LAAM) is formed by one neural network layer. Each neurone of this layer is associated with one component of the face vector. Thus the layer contains w*h neurones each. Besides, each neurone is connected to all the neurones, as it is shown in the figure 2.4.

	Input
����
�������
���
���
�
����
��
�

figure 2.4 Architecture of the Linear Auto-Associative memory

So the LAAM is constructed by computing the (w*h)2 weights of the neural network. Those weights are calculated during the training process. In this process, several training faces are presented to the LAAM, which has to memorise them. 

2.4.2 Widrow-Hoff Learning Rule

During the training process the weights have to be changed in order to minimise error. This can be done using several rules. One of them, which we use here, is the Widrow-Hoff learning rule.

Let
xi be the ith components of the input face,
oj be the output of the jth neurone,
wij be the intensity of the connection between the ith and the jth neurones, 
h be the learning constant and
t be the iteration index.

In the case of an auto-associative memory, the Widrow-Hoff learning rule for a neurone can be formulated as follows :
wij(t+1) = wij(t) + h * (xj - oj) * xi

For an AAM, the expected output of a neurone, oj, is its input, xj. This rule says that if the weight yields a result which is different than the expected result, then it has to be changed. The amount of this change is proportional to the excitation of the neurone xi and to a learning constant h.

The learning rule is an iterative rule. This process has to be carried out for every face of the training set several times. When this process is carried out on a single face, it is called an iteration, when it is achieved on the whole set of training faces, it is called an epoch. When several epochs are accomplished successively, it is obvious that the error, ej = oj - xj, is reduced, if h is well chosen.

This rule may be applied to the whole set of K training faces using matrix notation :

Let 
I = w*h be the number of pixels of the face or the number of components of the face vector,
K be the number of faces in the training set,
X = [xik] be the matrix of dimension I * K defining the training set. The kth column vector of this matrix,  xk, corresponding to the kth face of the training set.
W = [wij] be the weight matrix of dimension I * I.

From now on, it is assumed that the vector xk are normalised, which means |xk| = � INCORPORER Equation.2  ���, where the superscript T indicates that the matrix is transposed.

So, the learning rule becomes
W(t+1) = W(t) + h * (X - W(t) * X) * XT
This is the formula of an epoch, and here the index t is the index of the epoch.

Before proceeding, a digression concerning the matrices must be made. A real rectangular matrix, X, can be decomposed into singular values:

Let
P be the matrix of the eigenvectors of the matrix X*XT,
Q be the matrix of the eigenvectors of the matrix XT*X,
D be the matrix of the singular values (i.e. � INCORPORER Equation.2  ���, where � INCORPORER Equation.2  ��� is the diagonal matrix containing the eigenvalues of the matrix X*XT which are the same of the eigenvalues of the matrix XT*X)

The decomposition into singular values is
X = P * D * QT

It should be noted from their definitions, that P*PT = I and Q*QT = I, where I is the identity matrix.

Now, it is possible to return to the learning rule. This is given as an iteration rule. So, one might ask if this rule converges. Such convergence will now be demonstrated :

W(0) = 0
W(1) = h * X * XT = h * P*D*QT * Q*D*PT = h * P * � INCORPORER Equation.2  ��� * PT
W(2) = h * P * � INCORPORER Equation.2  ��� * PT + h(P*D*QT - h*P*� INCORPORER Equation.2  ���*PT * P*D*QT) * Q*D*PT
W(2) = h * P * � INCORPORER Equation.2  ��� * PT + h*P*D*QT * Q*D*PT - h2*P*� INCORPORER Equation.2  ���*D*QT * Q*D*PT
W(2) = h*P*� INCORPORER Equation.2  ���*PT + h*P*� INCORPORER Equation.2  ���*PT - h2*P*� INCORPORER Equation.2  ���2*PT
W(2) = P * ( h*� INCORPORER Equation.2  ��� + h*� INCORPORER Equation.2  ��� - h2*� INCORPORER Equation.2  ���2 ) * PT
W(2) = P * ( I - ( I - h*� INCORPORER Equation.2  ���)2 ) *PT

So, at the epoch t :
W(t) = P * ( I - ( I - h*� INCORPORER Equation.2  ���)t ) *PT
and the AAM converges only if 
� INCORPORER Equation.2  ���
i.e. if 0 < h < � INCORPORER Equation.2  ���, where lmax is the largest eigenvalue of X*XT.
As a consequence, when the learning process has been done, the weight matrix has the following form : � INCORPORER Equation.2  ��� = P*PT.

As it is already noted, the aim of an AAM is to reconstruct the memorised faces. Now that the weight matrix has been calculated, the output of the AAM is :

O	= � INCORPORER Equation.2  ��� * X
	= P*PT * X
	= P*PT * P*D*QT
	= P * D * QT
	= X

and the reconstruction is perfect.

2.4.3 Principal Components

As has been seen, a face which has been memorised by the AAM, when presented as input to it, added with some noise, is perfectly reconstructed. This reconstruction process is achieved linearly by the matrix � INCORPORER Equation.2  ���. It has also been noted that this matrix is formed by two parts : � INCORPORER Equation.2  ��� = P*PT. Thus, the reconstruction process can be completed in two parts:
y = PT * x and o = P * y.
Here, x is a face (column vector), o is the reconstructed face and y is an intermediate form. 
The neural network architecture that brings this intermediate form to light is shown in figure 2.5
��
����
�����������
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��

�Input Layer�Hidden Layer�Output Layer���I neurones�rank(X*XT) neurones�I neurones��fig 2.5 Neural net architecture presenting the intermediate form

The matrix P transforms a face represented in the image space, x, into a face described in the face space, y. The column vectors of P are the basis of this face space, and are called the principal components. Due to the construction method of matrix P, its vectors are orthogonal, and can be normalised. So the face space is described by an orthonormal basis. This basis cast a good set of features for the whole set of faces. 

At this stage, some consideration should be given to the dimension of vectors and matrices involved in this process.
dim(x) = dim(o) = (w*h) x 1.
dim(P) = (w*h) x rank(X*XT), and rank(X*XT) = min(w*h, K), K being the number of faces memorised.
dim(y) = rank(X*XT) x 1.

Often, as in the experiments here, K is larger than w*h. The face database used in this work contains 300 faces in the training set, those faces being 64 pixels by 64 pixels. In this framework, a face coded by the principal components is coded by fewer components than its original pixel form. This is refered to as dimensionality reduction. The reduction factor here is large; in this example, the original face is composed by 4096 pixels and the intermediate form, f, is composed by 300 components. This reduction factor can be further increased as shown below.

This dimensionality reduction could only be made because the original face has been projected into a new basis. This basis is given by the column vectors of the matrix P. This basis is the best basis that can been found which describes the trained faces. It forms a new space, called the face space.

As an example the figure 2.6 shows the first principal components.

� INCORPORER Paint.Picture  ���
fig 2.6 first principal components

2.4.4 Conclusion

We find that the description of PCA in the paradigm of neural network and linear auto-associative memory is interesting for several reasons. It gives an intuitive feel for the principal components, and it shows clearly how PCA may be implemented. However, the statistical paradigm is more rigorous mathematically and allows us to obtain further dimensionality reduction, as it will be seen in the subsequent section.

2.5 PCA Statistically

2.5.1 Transformation Matrix

The image space is highly redundant when used to describe faces. So, as has been previously demonstrated, a face space should be constructed. This redundancy is due to the fact that each pixel in a face is highly correlated to the other pixels. In fact, the covariance matrix, S, for a set of faces is highly non-diagonal : Taking the previous notation,
SX = X*XT = � INCORPORER Equation.2  ���
sij represents the covariance between the pixel i and the pixel j. There is a relation between the covariance coefficient and the correlation coefficient :
rij = � INCORPORER Equation.2  ���
The correlation coefficient is a normalised covariance coefficient.

The aim is to construct a face space, where each component is not correlated with any other components. This means that the covariance matrix of the new components should be diagonal:
SY = Y*YT = � INCORPORER Equation.2  ���
where
yi be the column vector describing the face xi in the basis of the face space, the principal components,
X be the matrix containing the faces (in the basis of the image space), xi, and
Y be the matrix containing the vectors yi.

This diagonal form of the covariance matrix implies that the variance of a variable with itself will be maximised whereas the covariance of a variable with any other variable will be nil. The variables will no longer be correlated anymore. So, this construction finds those directions which maximise the variance.

As previously, the principal components are calculated linearly. Let P be the transformation matrix:
Y = PT * X and X = P * Y
In fact P = P-1, because the P’s columns are orthonormal one to each other : PT*P = I.

Now, the question is, what should P be, given the condition that SY must be a diagonal matrix.
SY 	= Y*YT = PT * X * XT * P
	= PT * SX * P
So SY is the rotation of SX by P.
Let choose P as being the matrix containing the eigenvectors of SX:
SX * P = � INCORPORER Equation.2  ��� * P
where � INCORPORER Equation.2  ��� is the diagonal matrix containing the eigenvalues of SX. So,
SY = PT * � INCORPORER Equation.2  ��� * P = � INCORPORER Equation.2  ���* PT * P = � INCORPORER Equation.2  ���
and SY is the diagonal matrix containing the eigenvalues of SX. Since the diagonal elements of SY are the variance of the components of the training faces in the face space, the eigenvalues of SX are those variances. A firm grasp of the meaning of the elements of L is important in understanding the reduction of components that will be discussed subsequently.

2.5.2 Dimensionality Reduction

The aim of PCA is to reduce the dimension of the working space. The maximum number of principal components is the number of variable in the original space. However, in order to reduce the dimension, some principal components should be omitted.

Obviously, the dimensionality of the face space is less than the dimensionality of the image space :
dim(Y) = col(P) x col(X) = rank(X*XT) x K,
dim(yi) = rank(X*XT) x 1
As, it has been said previously, rank(X*XT) is generally equal to K. So a reduction of dimension has been made, and the information carried by yi is absolutely the same as the information carried by the original face xi. A further reduction of dimension can be made. The question is, what is the useful dimension of the face space. Of course, this cannot be perfectly known. However, there is nothing to suggest that the dimension of face space must be the number of the learned faces, as described so far.

The human brain is a very good face recognition machine. Even though the task is very difficult, the brain can identify a face very quickly. This speed may imply that the dimensionality of face space is not more than a few tens. This is attested by experience, as we will show in the third chapter.

Now, supposing that the dimension of face space is small, what basis vectors must be kept and which must be thrown away ? 

The reconstruction of a face xi, by the components yi is given by the following formula :
xi = P * yi
If pi are the column vectors of P, i.e., the basis vectors, then, the reconstruction of a face, using only some of the components yij is :
� INCORPORER Equation.2  ���	= � INCORPORER Equation.2  ���
	=� INCORPORER Equation.2  ���	where aj is a constant whose value will be determined
This introduces an error. The error vector is :
e	= xi - � INCORPORER Equation.2  ���
	= � INCORPORER Equation.2  ���
The error vector is a random vector and its effectiveness is calculated by its mean square value :
<e2>	= m(eT*e)
	= m� INCORPORER Equation.2  ���
	= � INCORPORER Equation.2  ���m� INCORPORER Equation.2  ���
The aim is to minimise the error. This is done, by solving
� INCORPORER Equation.2  ���<e2> = 0		i.e. 
-2 * m((yi - ai)) = 0		so,
ai = m(yi)		for M+1 ( i ( K
This means that the omitted values of yi have to be replaced by their mean value in order to minimise the reconstruction error. The error vector becomes :
<e2>	= � INCORPORER Equation.2  ���m� INCORPORER Equation.2  ��� = sum of the variance of the omitted components
	= � INCORPORER Equation.2  ���li
Then, if the eigenvalues are classified in decreasing order, the last eigenvalues (and their eigenvectors) may be dropped. This is the real dimensionality reduction of PCA.

In effect this means that some principal components can be dropped because they explain only a small amount of the data, whereas the largest amount of information is contained in the other principal components. The amount of information that the ith principal component carries is given by its eigenvalue, li. Usually the principal components (eigenvectors) are ordered in the decreasing order of their eigenvalues and the last ones are dropped. This fact is particularly important when augmented by the knowledge that for faces the decreasing of the eigenvalues is exponential.

2.5.4 Number of Dimensions Required

As has previously been said, the number of dimensions of the face space cannot be determined. However, a simple test can give an indication to the number of relevant dimensions. It has been noted that the eigenvalues decrease in an exponential manner. When considering at the tail of this exponential, all the eigenvalues are the same :
lN = lN+1 = lN+2 = ... = lK, with 1 < N < K.
It can be shown that the principal components associated with these eigenvalues are arbitrary, and hence should be discarded. So, N would be the dimension of face space.

�2.5.5 Graphical Example

It is perhaps easier to understand PCA with a graphical example than with pure mathematical equations. Let us say we have a random process that yields a two-dimensional result (x1, x2). A large number of experiments of this process have been made, and the results of these experiments are showed on the figure 2.6.
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fig 2.6 - Random process in its original coordinates, x1 and x2.

Clearly, in this random process, x1 is correlated to x2. It seems that some axes, other than x1 and x2, are more convenient to describe the process. The aim of PCA is to seek for the axes that maximise the variance of the data. Those axes are shown at the figure 2.7. They are a kind of feature of the process, and will, accordingly, be called feature axes.


It should be noticed that, as has been said in the theoretical part, the feature axes are orthogonal.
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fig 2.7 Random process and its own feature axes

It is obvious, from this graph, that the variance of the data is a maximum in the direction p1. Direction p1 maximises the variation of the projection of the points. The direction that yields the largest variance of the data, provided that it is orthogonal to p1, is p2. (However this is not particularly well illustrated here, because the example deals with two-dimensional data.) This can be viewed, when looking at the weights of the data in each direction p1 and p2 : The data spread is the widest in the direction p1, and the next widest spread is in the direction p2.

l1, the eigenvalue of the eigenvector p1 is 55, and l2, the one of p2 is 7. So, 89 % of the data variance is explained by the first feature p1, and only 11 % explained by the second feature p2. This means that p1 captures most of the variation (i.e., the distances between observations) in the original two-dimensional space. Hence, depending on the next stage of the process, the least important dimension, p2, might be suppressed. Since this reduction of dimension suppress information, it should only be made if the information is not relevant for the next stage of the process.

The principal components are linear combinations of the original variables :
� INCORPORER Equation.2  ���
which is, effectively, a rotating the original axes by 20°.
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fig 2.8 On the right , the random data in the feature space composed of the two features. On the left the data are represented in a space described only by the first feature

Another property of the first principal component, p1, is that it minimises the sum of the squared distances of the observations from their perpendicular projection onto the largest principal component. For this reason, the first principal component is sometimes refered to as the line of closest fit.

It should also be noted that the variation of the points in the direction of the second principal component, p2, is smaller than the variation of the points in the direction of the largest principal component, p1.
���Chap 3. EXPERIMENTS


3.1 Introduction

The aim of this project is to experiment with Principal Components Analysis (PCA) as a mean of recognising faces. Hence, this chapter forms the core of the project. To facilitate these experiments, a computer program performing PCA has been developed. This program will be described in detail in the fourth chapter.

In the introduction it was noted that what we call face recognition  is a broad term which may be further specified to one of the following tasks: identification, where the labels of individuals must be obtained, recognition of a person, where it must be decided if the individual has already been seen, and categorisation, where the face must be assigned to a certain category. Here, two of these tasks will be examined; identification and categorisation. In this case the categorisation that will be performed is one of sex classification.

Obviously, in order to test the system some faces are required. All the experiments described here have been executed on the faces provided by the Manchester face database. The next section of this chapter describes this face database.

3.2 Manchester Face Database

The Manchester face database includes pictures of thirty different individuals. It is divided into two sets: a training part and a testing part. Ten pictures of each person are included in each section — so there are 300 pictures in the training part and 300 pictures in the testing part. The majority of people in this face database are between 25 and 35 years of age. With the exception of a young black girl and an old Chinese man, the database is composed of adult Caucasians. 

There are only 7 females compared with 23 males. This will pose a problem in the sex classification, for the probability that a person is a male is very different from that of being female. Therefore, in the sex classification 16 males will be dropped from the face database to equalise these probabilities.

A pictorial representation of the database conveys more information than a laborious description of it. Therefore a subset of faces from each part of the database are shown in figures 3.1 and 3.2.

�
fig 3.1 Part of the training set of the Manchester face database


�
fig 3.2 Part of the testing set of the Manchester face database

In considering figure 3.1 (representing the training part of the face database) and figure 3.2 (representing the testing part), a difference should be observed which will be important for these experiments. The faces in the training set are in some way normalised. In fact, they are approximately centred, all at the same scale, with a roughly equivalent background for each picture. Each individual's expression is the same, with the ladies' hair being bound back (when their hair is long). In the testing set the faces are not normalised at all. They are not centred, exhibit a wide variety of scales, and include greater variation in background.  Facial expressions are dissimilar (sometimes smiling, sometimes sad, etc.), the ladies' hair is not necessarily arranged and people often wear glasses. It is not known for which recognition process the Manchester face database was built — perhaps a process that required such a database. However, if the training set is used to train a PCA system and the testing set to test it, the results are very poor (only 40% of good identification in practice). Clearly, as might be expected, PCA yields very bad results with this configuration. 

In fact PCA uses the training set to build a representation of face space. However this representation does not characterise the complete face space. It only represents that part of it which has all the faces normalised. Furthermore, the testing set represents another, somewhat orthogonal, region of the face space. Hence, this configuration is not good for PCA. Another configuration (training set / testing set) will have to be chosen.

As a technical aside, it should be noted that each picture's dimension is 64 by 64 pixels and each pixel is coded on 8 bits (256 grey levels).

3.3 EigenFaces

Before considering the results of the experiments, the process by which they are obtained must be well understood. In reviewing this process, the following sections cover the more practical aspects of working with PCA.

3.3.1 Introduction

As has been said, PCA computes the basis of a space which is represented by its training vectors. The basis vectors computed by PCA are in the direction of the largest variance of the training vectors. These basis vectors are computed by solution of an eigen problem, and as such the basis vectors are eigenvectors. These eigenvectors are defined in the image space. They can be viewed as images and indeed look like faces. Hence they are usually referred to as eigenfaces.
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fig 3.3 first eigenfaces

The first eigenface is the average face, while the rest of the eigenfaces represent variations from this average face. The first eigenface is a good face filter: each face multiplied pixel by pixel (inner product) with this average face yields a number close to one — with non–face images the inner product is far less than one. The direction of the largest variation (from the average) of the training vectors is described by the second eigenface. The direction of the second largest variation (from the average) of the training vectors is described by the third eigenface, and so on.

Each eigenface can be viewed as a feature. When a particular face is projected onto the face space, its vector (made up of its weight values with respect to each eigenface) into the face space describes the importance of each of those features in the face. Figure 3.4 describes this process pictorially.

�
fig 3.4 A face developed in the face space

In this example, a face is developed into the face space. The face is described in the face space by its eigenface coefficients (or weights). For convenience, the weight vector is normalised. Since the image developed in the face space is indeed a face, the weight of the first eigenface is very high, almost equal to unity. (This useful property may be used to test images for face–like qualities). The value of the weights decreases as the number of the eigenface increases. This is in conformity with the definition of eigenfaces. In fact, PCA finds the direction of largest variations. The first eigenface accounts for the maximal variation, the second one accounts for the second maximal variation, etc.

3.3.2 Generation Process

Figure 3.5 shows schematically what PCA does. It takes the training faces as input and yields the eigenfaces as output. Obviously, the first step of any experiment is to compute the eigenfaces. Once this is done, the identification or categorisation process can begin.
��


����������
������
�������
�������
�������
������
������
������

fig 3.5 Eigenfaces generation process


3.4 Reconstruction

Once the eigenfaces have been computed, each face in the image space can be viewed in the face space. The transformation from image space to face space is fairly simple. 

Let
E be the matrix of the first eigenfaces, where the first column is the first eigenface and so forth,
fI be a face in the image space, and
fF be the same face in the face space.

					fF = fI * ET 					(3.1)

This is a many-to-one transformation, since the dimensionality of the image space is far larger than the dimensionality of face space. Thus, the transformation introduces an error which can be seen by looking at a reconstructed face. The reconstruction is performed by taking the inverse transformation of 3.1:

					fI = fF * E

As an example, figure 3.6 shows a face along with its reconstruction.

�
figure 3.6 original face along with its reconstruction, the reconstruction error is shown below the reconstructed face.

Note the blurring of the reconstructed image. This can be simply explained. PCA puts each face of the training set on top of one another, and looks for variations. If the faces are not centred or are not at the same scale, the representation of the faces will be blurred. In the Manchester face database, which has been used for these experiments, the faces are neither centred nor at the same scale. Moreover half of the image constitutes background, and for PCA, a pixel belonging to the background has the same importance as a pixel belonging to the useful part of the image, the face.

The magnitude of the difference between the original face and its reconstruction, called the reconstruction error, is easily calculable. Let f'I be the reconstructed face of the original face fI, and e, the reconstruction error:
				f’I = ET * E * fI  and e = | fI - f’I |

Since the vectors are normalised, the cosine distance can be used instead of the Euclidean distance: 
				e = 1 - cos(f’I , fTI)
				e = 1 - f’I * fTI		since f’I  and fTI are normalised.

3.5 Identification

3.5.1 Identification Process

Once the eigenfaces have been computed, the face space has to be populated with known faces. Usually these faces are taken from the training set. Each known face is transformed into the face space and its components stored in memory.

At this stage the identification process can begin. An unknown face is presented to the system. The system projects it onto the face space and computes its distance from all the stored faces. The face is identified as being the same individual as the face which is nearest to it in face space. There are several methods of computing the distance between multidimensional vectors. Here, a form of Euclidean distance is chosen. In fact it is the cosine of the angle between the two faces which is computed. Since the faces are normalised (vector magnitude equals 1), a comparison of cosine distances and Euclidean distances is identical. The advantage is that cosine distances can be calculated far more efficiently.

The identification process is summarised in figure 3.7.
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fig 3.7 identification process

The algorithm described here is not a generic algorithm for face identification. It suffers from some omissions:
What if the image presented to the system is not a face ? Since the projection onto the face space is a many-to-one mapping, several images looking nothing like a face could be projected onto a stored face vector.
What if the face presented to the system has not already be learned (i.e. not stored as a known face)?

The first defect is easily avoided. It has already been determined that the first eigenface is a good face filter. Each image that is highly correlated with it can be categorised as being a face while the images with a low correlation factor can be rejected.

The second defect can be handled by an addition to the algorithm introduced by Turk and Pentland in 1991.

3.5.2 Turk and Pentland face recognition algorithm

Since a face is well represented by the face space, its reconstruction should be similar to the original, and the reconstruction error will be small. On the other hand, non-face images will have a large reconstruction error. This implies that the reconstruction error of faces should be within some threshold, (. 

When a face is projected onto the face space, it can lie in four different regions:
Near face space and near stored face
Near face space but not near a known face
Distant from face space and near a face class
Distant from face space and not near a known class

These possibilities are represented in figure 3.8. and by table 3.1

�
figure 3.8 simplified version of the face space illustrating the four results of the projection of an image onto the face space. In this case there are two eigenfaces, u1 and u2.


�Face space�Known face class�Result��1�near�near�Recognised as W1��2�near�far�unknown face��3�far �near�not a face��4�far�far�not a face��table 3.1 illustrating the four results of the projection of an image onto the face space


3.5.3 Training Set / Testing Set

The Manchester face database is not ideally suited for use with PCA due to two main factors. Firstly, as considered in the fourth section of this chapter, the faces are neither centred and nor at the same scale, causing a blurring effect. Secondly, the training set does not represent the complete face space — as has been noted in the second section of this chapter. 

There seems to be no consistent solution to the first problem. A program could translate the faces (with the aid of an user) in such a way that the nose is moved to the centre of the image. However the problem of scale would remain unsolved. Sometimes a morphing step is accomplished prior to PCA. This step puts each face's boundaries on an elliptic canvas. The results obtained with this method are very good and the blurring effect is almost avoided. Poggio uses an optical flow algorithm to morph the faces. However, this algorithm requires both front and side views of a particular face. Since the Manchester face database does not include side views, a morphing step is impossible for these experiments.
However, as can be seen from the final results shown later, the effect of this problem in the Manchester face database, while noticeable, is not serious enough to invalidate the whole exercise.

The second problem may be handled with the aid of a jack-knife technique. There are 30 different individuals, 10 pictures of each in the original training set and another 10 pictures of each in the testing set. This gives a total of 600 pictures. In our experimental configuration, 90% of those pictures  form the training set and the remaining 10% form the test set. Test set pictures are chosen randomly. The experiment is repeated ten times, in order to check that the method is consistent.

3.5.4 Results

The test described in the previous section was made using 30 eigenfaces. Before identification was attempted, the face space was populated with the totality of the training set faces (90% of the total faces).

Good results were achieved. In 10 tests, an average correct identification of 92% was obtained (with a maximum of 95% and a minimum of 85%). It should be noted that faces belonging to the original centred and scaled training set are always well identified (with a 99% success rate). The majority of errors come when trying to recognise faces from the original, eccentric, testing set. Hence, the cluster of normalised faces in the face space is much better defined than the cluster of the eccentric faces. The boundaries of each cluster of normalised faces almost never intersect, while the boundaries of the clusters representing more eccentric faces do interfere.

This set of experiments yields ten different sets of eigenfaces. It is interesting to consider whether these eigenfaces are identical, or close to each other. To perform a comparison, we calculate the inner product of two eigenface matrices (where the first matrix column is the first eigenface, etc.) corresponding to two different experiments. This yields a symmetric matrix where the element ij is the cosine of the angle between the ith eigenface of the first experiment and the jth eigenface of the second experiment. Pairs of experiments have been chosen randomly and their eigenface inner products calculated. The results are always similar, an example of which is shown in the 3D graph of figure 3.9.

�
figure 3.9 3 dimensional representation of the inner product of two eigenfaces matrix corresponding to two different experimentations

It can be seen that the matrix is almost diagonal. This means that the ith eigenface of the first experiment is almost parallel to the ith eigenface of the second one (some are parallel and in the same sense (cos = 1), while others are anti–parallel (cos = -1)). Also, the ith eigenface is almost orthogonal to each eigenfaces (different of i) of the second experiment.

This graph shows that the eigenfaces are almost the same in the ten experiments and hence that PCA yields a consistent face space.

An important fact should be noted. The identification process has been tested only on new images of individuals which composed the training set (out of the 20 mugshots of each individuals, two have been taken out of the training set to form the testing set). In fact, the identification of persons which were not included in the training set (but well in the populating set) is very poor. It has been noted in the theoretical chapter that PCA is a kind of auto-associative memory. This means that only the faces which were part of the training set are stored by the AAM. The face space is actually the space of the person which were included in the training set.

3.6 Sex Classification

3.6.1 Introduction

Psychologists think that the face space is ordered. Gender classification is a good example of a problem whose solution gives insight into the sorts of order which might appear in face space.
Indeed, sex classification is one of the most biologically important — and probably the easiest and fastest to achieve by humans. Bruce et al (1993) reported that human observers were able to classify photographs of non-familiar faces with respect to sex with 96% accuracy. However, this problem is far than being solved, since the visual information used by humans to decide whether a face is male or female is not yet understood. There are two categories of visual information representation: measurement based or pixel-based coding of the faces. The experiments presented here fall into the second category.

The classification process can be subdivided into two parts. First, pixels are transformed into a face space. Secondly, a classification algorithm is applied. In an experiment on sex classification these two processes will be tested at the same time. The aim of this work is to investigate PCA, and the question we attempt to answer is: Is face space a good representation of the faces? Therefore only the first part of the classification process (i.e. visual information representation) should be tested. In order to gain insight into this first part, two sets of experiments differing in their classification process will be completed. The first set of experiments uses the LVQ algorithm, and the second uses the reconstruction error.

The same training/testing sets as used in the identification experiments have been used here for sex classification. However, these sets contain images of only 7 females and 23 males. In order to have an equal probability of male and female, 16 males have been dropped from the sets. This means that the training set contains 252 faces, and the testing set contains 28 faces.

3.6.2 First Experiment, using LVQ

3.6.2.1 Method

The Linear Vector Quantisation algorithm, which is derived from Kohonen's Self-Organising Map, has been used to classify the sex of each individual. To understand this section, the reader should have some knowledge about LVQ, which can be found in *ref.lvq*.

Kohonen's Self-Organising Map is composed of neural cells disposed on a 2D plane. These cells, called codebook vectors, are specifically tuned to various classes of patterns through a supervised learning process. The locations of the responses tend to become ordered as if some meaningful coordinate system for different input features were being created over the network. 

The basic learning process is fairly simple, at each iteration step, one codebook vector, mc, is updated. This codebook vector is the best matching codebook vector of the input vector x :

	|x - mc| = min i (|x - mi|)

where mi are the codebook vectors.

The updating of mc is achieved by a delta rule in the discrete time formalism (t = 0, 1, 2, ...) by which the optimal values are reached asymptotically :

	mc(t+1) = mc(t) + a(t)(x(t) - mc(t)), and
	mi(t+1) = mi(t), for i ( c

with a(t) being a suitable, monotonically decreasing sequence of a scalar-valued gain coefficient, 0 < a(t) < 1. The decreasing of a(t), along with its initial value, are some of the LVQ parameters. It can be linear or inverse-time decreasing.

However, in order to have a spatially ordered map that have the same structure as the input patterns, a neighbourhood, Nc, around the best matching codebook vector, mc, has to be updated at each iteration step.
The type of this neighbourhood is another parameter of the algorithm. It can be a bubble or have a gaussian shape.

The focus of this method is to discover which combination of parameters yields the best results. This adjustment can only be done through experimentation. The parameters are listed, here, in order of importance:

number of codebook vectors used,
type of alpha decrease,
type of neighbourhood,
type of topology,
number of nearest neighbours used in the classification process.

In conjunction with those parameters the best learning process has to be found. Here also, there are several choices for the initialisation and for the learning of the codebook vectors:

1. Initialisation : The codebook vectors can be initialised evenly (same number of codebook vectors per class) or proportionally to the density of probability of the learning vectors (the number of codebook vectors associated to a particular class depends on the number of vectors belonging to that class).

2. Learning : The learning can be achieved with the lvq1 algorithm, with the optimised lvq1 algorithm (olvq1), lvq2 algorithm, or with lvq3 algorithm. Refer to *ref.lvq* for the definitions and the explanations of those algorithms.
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figure 3.10 Classification with LVQ

36.2.2 Results

The combination of the parameters which has been found to yield the best result is the following:
number of codebook vectors used�50��type of alpha decrease�linear��type of neighbourhood�gaussian��type of topology�hexagonal��number of nearest neighbours used in the classification process�5��
The initialisation of the codebook vectors has been made evenly, and the learning process follows:

olvq1 with 20,000 iterations
lvq3 during 150,000 iterations with a window length of 0.1 and an epsilon of 0.3

This yields an average (out of the ten experiments) of 81.4% (extrema : 88% and 71%) correct male classification and an average of 80.6% correct female classification (extrema: 87% and 69%). This is paradoxical, since the classification accuracy is lower than the identification accuracy. This paradox will be discussed in the conclusions.

A non-linear mapping, referred to as a Sammon (*ref.sammon*) mapping, was used to see if the male and female classes formed two linearly separable clusters. This mapping transforms N–dimensional vectors onto a 2–D surface plan in order to view the structure of the data. This non-linear mapping (NLM) was applied to the codebook vectors. It attempts to minimise the mapping error, which is the difference in distance between the vectors on the 2-D plan and the distance between the vectors in N–dimensional face space. The mapping error is given by:
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where,

dij* is the distance between vectors i and j in N–dimensional face space,
dij is the distance between the new vectors on the 2-D plan, and
L is the number of vectors which must be mapped.

The mapped codebook vectors obtained are shown in figure 3.11.

�
figure 3.11 codebook vector in the 2-D plan, the mapping error is 0.14

On first consideration of this figure, it could be surmised that the female class is divided in two parts which are separated by the male class (or the contrary). However, the diagram fails to show that Kohonen's self organising map is not a rectangle, but rather a sphere This spherical shape comes from the fact that the top edge is the same as the bottom edge, and the left edge is the same as the right edge. The diagram is a projection of the surface of this sphere and the female codebook vectors' cluster at the bottom of the graph is in fact linked with that at the top. The male and female codebook vectors do indeed form two classes. This graph is also evidence that the classification could not be executed with accuracy with the simple 'minimal distance from the average vector' rule, since the average male codebook vector is almost identical to the average female codebook vector.

3.6.3 Second Experiment, using the Reconstruction Error

3.6.3.1 Method

The following method is a good engineering method but not a good psychological method, since there is little evidence that the brain could work in this manner. Instead of using a single face space, this method uses one space per class: i.e. a separate male and female face space. Generation of the male and female eigenfaces is the same as for former eigenface generation. Obviously, the only difference is that in order to build the male face space, only male faces formed the training set, and for the female face space only female faces formed the training set.

The reconstruction process was studied in the fourth section of this chapter. The presumption is that the reconstruction error for a particular male face reconstructed from the male face space will be smaller than the reconstruction error of this male face reconstructed from the female face space. The classification rule then becomes simple. A face belongs to the class of minimal reconstruction error. This method is summarised at the figure 3.12.

�� INCORPORER Visio.Drawing.4  ���
figure 3.12 classification based on the reconstruction error

�36.3.1 Results

The results of this method are very good. An average correct classification of 98% has been achieved (extrema: 100% and 96%). It is interesting to note, as it is showed on figure 3.13, that male faces reconstructed from the female face space look like female faces and vice-versa.

�
figure 3.13 On the top, a male face along with its reconstruction from the male face space, and on the bottom, a female face along with its reconstruction from the male face space. The reconstruction error is shown at the bottom of each reconstructed face.

The successful results of this method anticipate good results in testing new individuals. The above results were achieved by only using pictures of individuals belonging to the training set. 
A new experiment was executed using the jack-knife method. The female face space was built using 20 pictures of 6 females and the male space with 20 pictures of 6 males. The (random) seventh male and female were the new subjects for classification. The experiment was repeated seven times. Average accuracy of this process was 79 %, despite an experiment which yielded 53 %. Aside from this one experiment the average correct classification was 88 %. The lone data point resulted from the picture of one man who was almost always classified as a woman. Interestingly, this man is bald, and hence the image should not appear at all female. The reason of this behaviour possibly comes from the image background. In the Manchester face database half of the pixels form the background. It is presumed that the person who was erroneously classified was not classified by gender but rather by background. 

36.4 Conclusion

There was a paradox in the first classification method in that it yielded results inferior to the identification process. The classification process should give a better result than the identification one. This was true for the second method, which only uses the information contained in the face space representation of the faces. The first method uses a complex algorithm to attempt to differentiate between male and female images with only a small number of codebook vectors. 

3.7 Conclusion

The behaviour of PCA when confronted with two major problems of face recognition — identification and categorisation — was investigated in this chapter. A jack-knife technique was used to compose the training set and testing set, since the original training set and testing set of the Manchester face database were not suitable for PCA.

The identification test used a simple minimal distance from a stored vector rule, and the result was good (91%). 

Categorisation was tested using two algorithms. The LVQ method yielded rather poor results (81%), while the method based on the reconstruction error yielded very good results (98%) and was also generalisable to unknown individuals (88%) despite the fact that the Manchester face database is not a good face database for PCA.
�Chap 4. IMPLEMENTATION

4.1 Introduction

A computer program has been developed to test PCA. Two versions were created; the first for Macintosh computers under System 7, the second on Windows (3.1 or 95). The Windows version has slightly more functionality than that for the Macintosh (i.e. LVQ classification). Only the core of the source code will be presented here. The complete source code (along with the executable files) can be downloaded on the World Wide Web page : http://elec.gla.ac.uk/~romdhani/.

The Windows version is subdivided into three parts : the executable file (PCA.EXE), and two DLLs (PCA.DLL and LVQ.DLL). In the Mac version, the whole program is contained in one executable Mac file. Aside from the lack of LVQ functionality and the different user interface, the Mac code is approximately equivalent to that for Windows. Thus, in the remainder of this chapter, the focus is placed on the Windows version. The reader interested in the Mac version must keep in mind that the source files contained in the Windows DLL, PCA.DLL, form part of the Mac source files.

This program was developed in an object oriented manner. In Windows, it has been compiled with Microsoft’s Visual C++ ver. 1.0, and on Mac, with Symantec C++ ver. 6.3.

4.2 PCA DLL

As noted in the theoretical discussion above, PCA makes heavy use of the matrix paradigm. A face can be viewed as an image or as a column vector, and a set of faces are then considered as a set of images or a matrix. Hence PCA.DLL is subdivided into a section that handles vectors and matrices, and also a section to handle images. There are also bridge classes and functions which make the connection between the two paradigms. 

There are also two other small parts of PCA.DLL : One is composed of useful support classes and functions, and the other of two user interface classes.

A description of each C++ classe used is presented below :

I. Matrix Classes

CMatrix class : This is the basic class describing a matrix. When an object of this class is instantiated, the memory required to store its matrix elements is allocated.

CMatrixPtr class : As with the CMatrix class, the CMatrixPtr class describes a matrix. However no memory is allocated to store matrix data. In fact, this class is used to construct a matrix from data which is already stored in memory. The class is particularly useful as a bridge between the image paradigm and the matrix paradigm. If an image set is already stored in memory, it can be considered as a matrix when a CMatrixPtr object is associated with it. Once a set of images is considered as a matrix, matrix calculations can be applied to it. This class is derived from CMatrix

CMatrixSym class : The CMatrixSym class describes a symmetric matrix. The only purpose of this class is to save memory, since only half of an equivalent matrix’s memory need be allocated at object instantiation. This class is derived from CMatrix.

CVect class : The CVect class implements a vector class.

CDiag class : The CDiag class implements a diagonal matrix. Here also, the purpose is to save memory, since only N elements of a squared N by N matrix need be allocated. This class is derived from CVect.

II. Image Classes

CFace class : The CFace class implements the functions required to handle a particular face : 
	- save to disk and load from disk (in the Portable Graphics Map (PGM) file format) and
	- label a face.

CFaceDB class : The tasks performed by PCA are never applicated to a particular face but rather to a whole set of faces (training, testing, reconstruction, classification, etc.). Therefore a class describing a set of faces is required. This is implemented by the CFaceDB class.

III. User Interface Classes

CDrawFace class : The CDrawFace class is used to display the faces of either a CFaceDB object or a CMatrix object. Faces are displayed beside one another, along with their associated names labelled underneath.

CDrawRec class : The CDrawRec class performs the same task as the CDrawFace class, but displays two CFaceDB objects. The first face of the first set of faces is displayed to the right of the equivalent face in the second set. Then, on the next line, the second face of each set of faces is displayed, and so on.

IV. Serviceable Classes

Eigen functions : These functions calculate the eigenvectors of a CMatrix object. Since the eigenvector calculations are to be performed on real symmetric matrices, the eigenvectors are approximated using Householder reduction. The real, symmetric matrix is first reduced to a tridiagonal form (in which only the diagonal and the superior (or inferior) elements hold non-zero values). Once a tridiagonal form is obtained, eigenvalues and eigenvectors may be calculated simply. More information on this implementation can be found in [38].

CMemory class : The CMemory class implements the memory functions; allocation, release, locking, and unlocking. It is useful to separate functions dependant on the Operating System (e.g. memory functions) from the rest of the code. This is achieved by the CMemory class. 

The first version of this program was implemented on the Macintosh. If low-level memory management functions were called from within the main code, then porting of this program from a Mac to Windows environment would be difficult, since each memory function would have to be changed at each point in the main code. However, since the memory functions are separated from the main code through the CMemory class, only this class had to be rewritten. This note is also applicable to the implementation of the user interface classes - CDrawFace and CDrawRec.

�4.3 Main Program - PCA

Having described PCA.DLL, the main part of the program can be detailed. The core functionality of this program is contained in the class CAAM (which stands for Class Auto-Associative Memory). The implementation of this class is located into the files CAAM.CPP and LOAD.CPP. The only purpose of the file LOAD.CPP is to load a project file, interpret its lines and pass the interpreted commands to CAAM.CPP. The definition of a project file is included in Appendix A - ‘User’s Manual’. This project file is written by the PCA user, and is the way for the user to give commands to PCA. The real engine of the program is contained in the file CAAM.CPP. Several functions of the class CAAM perform the tasks of PCA, these functions are detailed below.

4.3.1 EigenFaces Generation

The code for eigenface generation is contained into the function CAAM::Build. This code is shown below. However, before detailing the code, it should be noted that the eigenface generation implementation is not the one suggested in chapter 2. In fact, the eigenfaces are the eigenvectors of the matrix X*XT.

Adopting the notations of chapter 2, X is the matrix containing the input faces - each column representing a column face vector. The dimension of X is I (number of pixels of each face) by K (number of faces in the training set). As has been noted, the number of faces in a training set is usually smaller than the number of pixels contained in each face. For example, in this project, the training set contained 540 faces while each face contained 4096 pixels.

Hence, the dimension of matrix X*XT is I x I (4096 x 4096). However, its rank is K (if each training face is different from each other), and hence it has K eigenvectors. It is a waste of both processing time and memory to compute the eigenvectors by this basic method of chapter 2. A more efficient technique will be presented here. Instead of computing the outer product X*XT, the inner product, XT*X, is calculated. The eigenvectors of the outer product are deduced from those of the inner product.

Let
the matrix V be the outer product, X*XT,
the matrix Q be the matrix of the eigenvectors of V,
the matrix P be the matrix of the eigenvectors of the outer product, X*XT, and
the diagonal matrix � INCORPORER Equation.2  ���be the matrix of the eigenvalues of the inner product and of the outer product

				� INCORPORER Equation.2  ���				(4.1)
It is easy to check that P, given by (4.1), is indeed the eigenvectors of X*XT. The following equality has to be verified :
				X*XT * P = � INCORPORER Equation.2  ���* P
provided that Q is the matrix of the eigenvectors of V :
				XT*X * Q = � INCORPORER Equation.2  ���* Q
Thus,
				X*XT * X * Q * � INCORPORER Equation.2  ��� = � INCORPORER Equation.2  ��� * X * Q * � INCORPORER Equation.2  ���, and
				X * � INCORPORER Equation.2  ��� * Q * � INCORPORER Equation.2  ��� = � INCORPORER Equation.2  ��� * X * Q * � INCORPORER Equation.2  ���
So, P, given by (4.1), is indeed the matrix of the eigenvectors of X*XT.

P is computed by this technique in the function CAAM::Build which is shown at the listing 4.1.

This function assumes that:
The training set is loaded and stored into the pointer to a CFaceDB object, pTrainingDB, which is requested by the user through the section [TRAINING] (which is detailed in the Appendix A - ‘User’s Manual’).

�int CAAM::Build(long leigen)
	{
	long number; 
	long lFace = pTrainingDB->GetNumFace();
	long lPixel = pTrainingDB->GetNumPixel();
	CMatrixPtr *pX;											/*Matrix containing the training set, whose each columns points to a face data*/
	CMatrixPtr *pQ;
	
	Msg(1, str_AAM_BUILD_START);
	
	lRow = lPixel;
	lCol = lFace;
	if (leigen == -1)
		lEigen = lFace;
	else
		lEigen = lmin(leigen, lFace);
	
	pX = new CMatrixPtr(lRow, lCol);						/*Construct the matrix whose each columns points to a face data*/
	pQ = new CMatrixPtr(lCol, lCol);						/*Construct an intermediate matrix*/
	pQ->AllocateCol();										/*Allocate memory to store its columns*/
	pEVal = new CDiag(lCol);								/*Diagonal matrix containing the eigenvalues*/
	
	DBtoMat(pX, pTrainingDB);								/*Copy the pointer of the faces' data into the one of the columns' matrix*/
	pX->NormalizeCol();										/*Normalize each face*/
	Msg(0, str_AAM_BUILD_NORMALIZED);
	            
	pX->InnerProduct(pQ);									/*pQ = transpose(pX) * pX */
	Msg(0, str_AAM_BUILD_INNER);
	
	pQ->Eigen(pEVal, lEigen);								/*put in pQ its eigenvectors and in pEVal its eigenvalues*/
	Msg(0, str_AAM_BUILD_EIGEN1);
	
	Sort(pQ, pEVal);	
		/*Sort in descending order the eigenvalues in order to put*/
	Msg(0, str_AAM_BUILD_SORT);							/*eigenvectors whose have the biggest eigenvalues at the biginning of the matrix*/
	
	lEigen = lmin(lEigen, pQ->GetCol());            /*Sort may suppress columns, lEigen has to be les or equal than the number of col of pQ*/
	pEVect = new CMatrixPtr(lRow, lEigen);				/*Construct the eigenvector matrix*/
	pEVect->AllocateCol();									/*Allocate memory to store its columns*/
	
	if (leigen == -1 && number == 0)										
		pEVect->Multiply(pX, pQ);							/*pEVect = pX * pQ*/
	else
		pEVect->Multiply(pX, pQ, TRUE, lPixel, lEigen);		/*the same but this one is executed if the user asked for less eigenvectors*/
		
	pEVal->Pow(-0.5);										/*pEVal = PEVal ^ -1/2*/
	if (leigen == -1 && number == 0)
		pEVect->Multiply(pEVal);							/*pEVect = pEVect * pEVal*/
	else	
		pEVect->Multiply(pEVal, TRUE);						/*the same but this one is executed if the user asked for less eigenvectors*/
	pEVal->Pow(-2);											/*Reset the eigenvalues to their real values*/
	delete pQ;												/*delete the intermediate matrix*/
	delete pX;										/*delete the matrix storing the training set (but the set remains in the pTrainingDB object)*/
	GetEigenDB()->Copy(pEVect, pEVal);						/*Copy the pointer of each eigenvectors into the pointer of each face's data*/
	
	Msg(-1, str_AAM_BUILD_DONE, lEigen);
	return 0;
	}
�Listing 4.1 code of the function CAAM::Build which computes the eigenfaces

When this function is called, it is assumed that a training set has been loaded into pTrainingDB which is a pointer to an object of the class CFaceDB. At the line 20, pX, the matrix associated with the training faces, is created. This is a pointer to a CMatrixPtr object, so no memory intended to store the actual values of the faces is allocated. The only allocated memory is that needed to store the pointers to the memory of the faces contained in pTrainingDB. pX is filled with those pointers at the line 29. In fact, the function DBtoMat converts a CFaceDB object into a CMatrixPtr object. The function DBtoMat is shown at the listing 4.2.

�void DBtoMat(CMatrixPtr *pMat, CFaceDB *pDB)
	{
	long l;
	long lCol = pDB->GetNumFace();
	
	for (l = 1; l <= lCol; l++)
		{											/*Copy the pointer of the faces' data into the one of the columns' matrix*/
		pMat->SetColumn(l, pDB->GetFaceMem(l));
		}
	}
�Listing 4.2 code of the function DBtoMat, which converts a set of faces into a matrix

At line 22, another pointer to a CMatrixPtr object is constructed, pQ. pQ will hold the values of the inner product eigenvectors. Since these values are new, memory must be allocated. This is done at line 24. At line 26, pEVal, an object of the class CDiag, which will hold the eigenvalues is constructed. After the filling of pX, its columns are normalised (the length of each of its column vectors set to 1) at line 26.

Then, at line 35, the inner product of pX is calculated and stored in pQ. After this, as can be predicted, the eigenvectors and the eigenvalues of pQ are computed (at line 39). The eigenvectors are stored into the matrix pQ (the eigenvectors replace the original matrix), and the eigenvalues into pEVal. Then, at line 43, the eigenvectors are ordered in decreasing order of their eigenvalues.

pEVect, the matrix which will hold the eigenvectors of the outer product, is constructed at line 51. This matrix is also of the type CMatrixPtr, and since its values are new, memory has to be allocated. It should be noted that lEigen is the number of eigenfaces requested by the user. If the user did not specified this number, all the eigenfaces are computed. The rest of the calculation is then performed. At line 80, The eigenfaces are stored into a CFaceDB object. This is necessary in order to display the eigenfaces as images, since only images may be displayed through the classes CDrawFace and CDrawRec of PCA.DLL.

Once the eigenfaces are computed, tasks such as reconstruction can be performed.

4.3.2 Reconstruction

In order to reconstruct faces, they must be transformed into the face space and then back to image space. This is achieved using the following formula :

				fF = fI * PT and f’I = fF * P

The function implementing this is CAAM::Reconstruct and its code is shown at the listing 4.3.

This function assumes that:
The eigenfaces are either computed or loaded into pEVect which is a pointer to a CMatrixPtr object.
The faces to be reconstructed are loaded into the pointer to a CFaceDB object, pReconstructionDB, which is requested by the user through the section [RECONSTRUCTION] (which is detailed in Appendix A - ‘User’s Manual’).

�int CAAM::Reconstruct()
	{
	CMatrixPtr	*pReconstructionMat;						/*Matrix containing the pixel of the faces to be reconstructed*/
	CDiag		*pReconstructionCos;							/*Cosine between the real faces and the reconstructed ones*/
	long lRow, lCol;
	long lFace = pReconstructionDB->GetNumFace();
	long lPixel = pReconstructionDB->GetNumPixel();
	
	Msg(1, str_AAM_RECONSTRUCTION_START);
	
	lRow = lPixel;
	lCol = lFace;
	pReconstructionMat = new CMatrixPtr(lRow, lCol);
	pReconstructedMat = new CMatrixPtr(lRow, lCol);
	pReconstructedMat->AllocateCol();
	pReconstructionCmp = new CMatrix(lEigen, lCol);
	pReconstructionCos = new CDiag(lFace);
	pReconstructedDB = new CFaceDB();
	
	DBtoMat(pReconstructionMat, pReconstructionDB);	/*Copy the pointer of the faces' data into the one of the columns' matrix*/
	
	pReconstructionMat->NormalizeCol();					/*Normalize each face*/
	Msg(0, str_AAM_RECONS_NORMALIZED);
	
	FaceToCmp(pReconstructionCmp, pReconstructionMat);		
		/*Compute the composants of the unknown faces*/
	
	CmpToFace(pReconstructedMat, pReconstructionCmp);		
		/*Compute a set of faces from a set of composants*/
	
	ComputeCos(pReconstructionCos, pReconstructionMat, pReconstructedMat);
	
	pReconstructedDB->Copy(pReconstructedMat, pReconstructionCos);
		/*Copy the pointer of each eigenvectors into the pointer of each face's data*/
	
	delete pReconstructionMat;
	delete pReconstructionCos;
	Msg(-1, str_AAM_RECONSTRUCTION_DONE, lFace);
	return 0;
	}
�listing 4.3 function which reconstruct faces

At the beginning of this function, several matrices are declared. Then, as in the Build function, the input faces are transformed into a matrix with the function DBtoMat, at line 22. At line 25, the input matrix is normalised. Next, the input faces are transformed from the image space to the face space by the function FaceToCmp whose code is shown at the listing 4.4. After this the faces are transformed back to the image space with the function CmpToFace whose code is given at the listing 4.5. Then the reconstruction error is calculated by the function ComputeCos. At line 37, the reconstructed faces are copied into a CFaceDB object. The name given to these faces is their reconstruction error.

�void CAAM::FaceToCmp(CMatrix *pCmpMat, CMatrix *pFaceMat)
	{
	pEVect->SetTranspose(TRUE);
	pCmpMat->Multiply(pEVect, pFaceMat);
	pEVect->SetTranspose(FALSE);
	Msg(0, str_AAM_F2CMP);
	}
�listing 4.4 function which transforms a set of faces from the image space to the face space

�void CAAM::CmpToFace(CMatrix *pFaceMat, CMatrix *pCmpMat)		
	{
	pFaceMat->Multiply(pEVect, pCmpMat);
	Msg(0, str_AAM_CMP2F);
	}
�listing 4.5 function which transforms a set of faces from the face space back to the image space

�void ComputeCos(CDiag *pCos, CMatrix *pMat1, CMatrix *pMat2)
	{
	pMat1->SetTranspose(TRUE);
	pCos->Multiply(pMat1, pMat2);
	pMat1->SetTranspose(FALSE);
	Msg(0, str_AAM_COS_DONE);
	}
�listing 4.6 function which compute the cosine of each column of to matrices (which is identical to the inner product)

4.3.3 Identification

Besides reconstruction, an important task is to identify individuals. This is achieved by the function CAAM::Recognize. This function assumes that :
The eigenfaces are either computed or loaded into pEVect which is a pointer to a CMatrixPtr object.
The known faces are loaded. Firstly pMetDB, which stores the faces of the [MEET] section (detailed in the Appendix A - ‘User’s Manual’), is examined. If there are no faces in pMetDB, it is assumed that the known faces are the faces of the training set (which then must not be empty).
The faces to be tested must be loaded into the pointer pRecognizeDB which points to an object of the class CFaceDB.

The code of this function is shown at the listing 4.7.

�int CAAM::Recognize(int nElect, BOOL bRecons)
	{
	CMatrixPtr	*pRecognizeMat = NULL;	/*Matrix containing the pixel of the faces to be recognized by th memory*/
	CMatrixPtr	*pRecognizedCmp = NULL;	/*Composants of faces of the already met people, each column correspond to a recognized face*/
	CDiag		*pRecognizeCos;		/*Cosine between the original face to be recognized and the face known recognized face*/
	CMatrix	*pAssociation = NULL;	/*At the end of the process pAssociation[n] will be equal to the number of the meeting face which looks the most like the nth face to recognize*/
	char Name1[64];
	char Name2[64];
	
	long lMetFace, lRecFace, lCorrect, l;
	long lPixel;
	CMatrixPtr *pX = NULL;  /*Matrix containing the training set, whose each columns points to a face data*/
	float fPercent, fProb;											
	BOOL bMet = TRUE;
		
	Msg(1, str_AAM_RECOGNIZE_START);
	
	if (pMetDB == NULL)
		{												/*The met people are those in the training set*/
		pMetDB = pTrainingDB;
		bMet = FALSE;
		}
	
	lPixel  = pMetDB->GetNumPixel();
	lMetFace = pMetDB->GetNumFace();
	
	lRow = lPixel;
	lCol = lMetFace;
	pX = new CMatrixPtr(lRow, lCol);						/*Construct the matrix whose each columns points to a face data*/
	pMetCmp = new CMatrixPtr(lEigen, lCol);
	pMetCmp->AllocateCol();									/*Allocate memory to store its columns*/
	
	DBtoMat(pX, pMetDB);	/*Copy the pointer of the faces' data into the one of the columns' matrix*/
	pX->NormalizeCol();
	Msg(0, str_AAM_MEET_NORMALIZED);
	
	FaceToCmp(pMetCmp, pX);	/*Compute the composants of the training set*/
	delete pX;
	
	lRecFace = pRecognizeDB->GetNumFace();
	
	pRecognizeMat = new CMatrixPtr(lRow, lRecFace);
	pRecognizedMat = new CMatrixPtr(lRow, lRecFace);
	pRecognizedMat->AllocateCol();
	pRecognizeCmp = new CMatrix(lEigen, lRecFace);
	pRecognizedCmp = new CMatrixPtr(lEigen, lRecFace);
	pRecognizeCos = new CDiag(lRecFace);
	pRecognizedDB = new CFaceDB();
	
	if (strcmp(pMetDB->GetFaceName(1), "") != 0 && strcmp(pRecognizeDB->GetFaceName(1), "") != 0)
		pAssociation = new CMatrix(lRecFace, 2);
	else
		pAssociation = NULL;
	
	DBtoMat(pRecognizeMat, pRecognizeDB);
	pRecognizeMat->NormalizeCol();
	Msg(0, str_AAM_RECOG_NORMALIZED);
	
	FaceToCmp(pRecognizeCmp, pRecognizeMat);
	
	RecognizeCmp(pRecognizedCmp, pRecognizeCmp, pMetCmp, pAssociation, nElect, pMetDB);
	
	if (bRecons == TRUE)
		{
		CmpToFace(pRecognizedMat, pRecognizedCmp);
		
		ComputeCos(pRecognizeCos, pRecognizedMat, pRecognizeMat);
		
		pRecognizedDB->Copy(pRecognizedMat, pRecognizeCos);
		}
			
	delete pRecognizeMat;
	delete pRecognizedCmp;
	delete pRecognizeCos;
	if (pAssociation != NULL)
		{												/*If Face's name are given (by the user) for the met (or the training) database and for the faces to be recognized,*/
		lCorrect = 0;											/*Calculate the number of correct recognitions*/
		fProb = 0.0;
		pAssociation->Lock();
		for (l = 1; l <= lRecFace; l++)
			{
			if (pAssociation->GetAt(l, 1) == INDETERMINATE)
				{												/*Impossible to recognize the face*/
				Msg(0, "INDETERMINATE:   %s -> ???", pRecognizeDB->GetFaceName(l));
				}
			else
				{
				strcpy(Name1, pMetDB->GetFaceName(pAssociation->GetAt(l, 1)));
				strcpy(Name2, pRecognizeDB->GetFaceName(l));
				if (strcmp(Name1, Name2) == 0)
					{
					lCorrect++;
					Msg(0, str_RECOGNITION_RESULT_Y, Name2, Name1, pAssociation->GetAt(l, 2));
					fProb += pAssociation->GetAt(l, 2);
					}
				else
					Msg(0, str_RECOGNITION_RESULT_N, Name2, Name1, pAssociation->GetAt(l, 2));
				}
			}
		
		pAssociation->Unlock();
		fPercent = (float)lCorrect / (float)lRecFace;
		Msg(-1, str_AAM_RECOGNIZE_PERCENT, lRecFace, lCorrect, fPercent*100.0);
		Msg(0, "Average prob. of good recognition = %.1f", fProb/(float)lCorrect);
		}                                               
	else
		Msg(-1, str_AAM_RECOGNIZE_DONE, lRecFace);
	if (bMet == FALSE)
		{
		pMetDB = NULL;
		}
	return 0;
	}
�listing 4.7 function which perform the identification of faces provided the eigenfaces and the known faces which populate the face space

After the matrix declarations, the decision as to whether the known faces are stored in pMetDB or in pTrainingDB is taken, at line 25. Then the known faces are transformed into the face space, at line 48. Next, several matrices are constructed. Afterwards, at line 61, the presence of names labelling the faces into the known faces set and the testing set is checked. If no names are present, then there will be no identification, and the process performs only the task of reconstruction.

At line 71, the known faces are transformed into faces space. At this stage identification can be performed. This is achieved by the function RecognizeCmp which assigns each testing face to the nearest known face. Here the real Euclidean distance is computed. The result is stored in the matrix (of type CMatrix) pAssociation. This matrix contains two column vectors, whose dimension is the number of faces in the testing set. In the first column, the element i contains the number of the known face to which the ith testing face is associated.

It has been noted that the decision rule is based on nearest known faces. There is however an option in RecognizeCmp which allows for more flexibility : The nearest face can be chosen amongst several elector faces. One of the parameters of the RecognizeCmp function is nElect (an integer). This parameter holds the number of electors which must be chosen. If nElect == -1, it means that only one elector is chosen. This is identical to the nearest face decision. However if more than one elector is chosen, the function first finds the nElect faces nearest to the one to be identified, then assigns the test face to the majority of these faces. So for better identification the number nElect should be odd. If there is not a face which is represented more times than other faces, the result is undetermined and the constant INDETERMINATE is placed in the right element of the first column of the matrix pAssociation. The second column of pAssociation holds the probability of identification to be correct (only in case of more than one elector).

The implementation of RecognizeCmp is not intrinsic to PCA and will not be presented here.

At line 76 of the CAAM::Recognize function, the reconstruction of the testing faces is achieved if the user wanted it. Then results are presented to the user. The code performing this presentation begins at line 88 and continues to the end.

4.3.4 Classification

The function CAAM::Categorize is a gateway to the LVQ routines. Its purpose is to transform the known faces and the test faces into face space, then to interpret the LVQ parameters given by the user and to call the LVQ functions. The LVQ functions are located in LVQ.DLL which will be detailed below.

The transformation of the faces from image space to face space is achieved in the same manner as performed in the functions CAAM::Reconstruct and CAAM::Recognize. The code for CAAM::Categorize will therefore not be presented here.

�4.4 Classification DLL - LVQ.DLL

The code of LVQ.DLL was written by the LVQ programming team of the Helsinki University of Technology. This code can be downloaded from the ftp server cochlea.hut.fi (130.233.168.48) into the directory /pub/lvq_pak/. It has been modified in order to be assembled with the rest of the PCA program :
The calling functions has been modified : The original version of this program is composed of several executable programs each of which performs a single task. In the LVQ.DLL, the whole set of these programs have been assembled together and one calling function has been created for each program. All of these calling functions accept the same parameter - a pointer to a structure LVQPARAMS which holds all the information required to run all the different task of LVQ.
The user interface has been modified : The original LVQ program was meant to be run on DOS or UNIX. Therefore the messages to the user were displayed using the C function printf. However in a MS Windows environment another display route had to be chosen. This is achieved by the function Msg, which is heavily used thorough the program. Its purpose is to send a message to the principal window requesting display of a character string. The implementation of this function is located in the file PCADLL.CPP.
��Appendix A. USER’S MANUAL

A.1.1 OVERVIEW

PCA is an application that performs principal component analysis. In this case it has been developed to work with faces (as part of a face recognition project); however it can be used with any N dimensional data. In order to make this text easier to understand, assume that PCA is being performed for faces, but in general every time you see the word 'face', you can replace it by 'vector'.

There are two versions of PCA. The version 1 is available on Macintosh and on PC (Windows). The second version is only available on PC. The second version is improved with the LVQ classification.

PCA computes the principal components from a training set of faces. Once the principal components have been calculated, it can reconstruct and recognize faces, store the principal components (along with their eigenvalues) and store the components of a face in the principal component basis. During the process, it reports on what it is actually doing.

When you launch PCA it asks for a project file. You have to give (via the usual Open File dialog box) the name of the project file you want to use. The aim of the project file is to tell PCA what it has to do:

Define the training set 
Define the faces to reconstruct 
Define the faces to meet (which stores the components of the faces in order to be able to recognise them afterwards)
Define the faces to recognise 
Define the face to classify

A.1.2 SYSTEM REQUIREMENTS

There are two versions of PCA : one o running on Macintosh, and one on Windows

In order to run PCA on Macintosh, you will require:

A Macintosh equiped with a Motorola 680x0 
8Mb RAM, or 64Mb RAM 
Mac OS system 7.x 

The Windows version requires :

Windows 3.1 or 95,
as mush memory as you can possibly have

A.1.3 PROJECT FILE

A.1.3.1 Introduction

The project file is a text file where you tell PCA what it has to do. It is composed of several sections and commands.

The sections are :

[TRAINING] 
[RECONSTRUCTION] 
[MEET] 
[RECOGNIZE] 
[CATEGORIZE]

The commands are :

.SAVE EIGENVECT 
.SAVE EIGENFACE 
.SAVE MEET 
.SAVE RECOGNITION 
.SAVE RECONSTRUCTION 
.LOAD EIGEN 
.LOAD MEET 
.LOAD RECONSTRUCTION 
.LOAD RECOGNITION 
.SAVE REPORT 

Important
In version 1 of PCA the command’s names are defined as above. However, in the second version, no space are allowed between the two parts of the command name (e.g. instead of �.SAVE EIGENVECT use .SAVE_EIGENVECT). This remark is valid for every commands. 

A.1.3.2 Sections

As you can see the section tags are framed by square brackets, and the commands begin with a dot. The syntax of a section is as follows:

[section_name optional_parameter]
filename1       face name1
filename2       face name2
    .                 .
    .                 .
    .                 .
filenameN       face name3
[END]

It begins with the section name and an optional parameter, followed by a list of file names and of face names, and the end tag.

In the Macintosh version, filename is the Macintosh full path name of a file. For instance, the full path name of the file named Sami located on the volume (which is the disk drive's name) Quadra 950, in the folder Users/MSc is: Quadra 950:Users:PhD:Sami.

To learn more about the mac full pathname, please refer to "Inside Macintosh : Files" Pg 2-27.

In the PC version, a filename is a normal DOS filename.

For information about file types, go to the paragraph named DATA FILES. The face name is any name you want to assign to a particular face. If you have multiple views of the same face, you can assign the same name to all those views.

The TRAINING section lists all the files of the training set. It accepts one parameter which is optional. This parameter is the number of principal components PCA has to compute. It must be greater than zero and lower than the number of faces in your training set and lower than the number of dimension of your original set (whichever is the minimum). If this parameter is omitted, PCA computes the maximum number of principal components (which is the number of faces in the training set, or the number of pixel of a face).
If the TRAINING section is omitted, the project file must contain the command .LOAD EIGEN which will be explained below.

The RECONSTRUCTION section lists the faces PCA has to reconstruct. It reconstructs a face by calculating the components of the face in the principal component basis, and then those components are reconverted into a face.

In order to perform recognition, it has to store the components of people it has already met. Therefore the MEET section lists the faces to be stored. PCA computes their components and stores them in memory. To be able to recognize people this section must be present in the project file. If the MEET section is omitted and there exists a TRAINING section, the components of the training faces will be stored instead. If the MEET and the TRAINING sections are omitted, and the RECOGNIZE, or the CATEGORIZE sections are presents an error is reported.

The RECOGNIZE section lists the faces to be recognized. If the optional parameter R is present a reconstruction will be performed (only valid in the second version, in the first version a reconstruction would be always performed).

The CATEGORIZE section classify the faces using the LVQ algorithm. This section is only present in the second version of PCA. The classification is a supervised classification : The faces are classified into classes defined by their label (face name). The LVQ algorithm accepts several parameters which must be given inside the body of the section. The parameters are assigned by the following command :
.parameter_name <value>
where parameter_name must be one of the following :
noc : the value is the number of codebook vectors
knn : the value refers to the number of nearest neighbours used in the classification process
xdim : the value refers to the horizontal dimension of the self-organizing map (SOM)
ydim : the value refers to the vertical dimension of the SOM
neigh : the value refers to the type of neighbourhood. It must be one of these values: BUBBLE or GAUSSIAN
topol : the value refers to the type of topology of the SOM. It must be one of these values: DATA, LVQ, HEXA, or RECT
seed : the value refers to theseed of the random number, if it is 0, the clock is used as seed
alpha_type : the value refers to the type of alpha decrease. It must be one of these values: LINEAR, or INVERSE_T
alpha : the value refers to the initial alpha value

Along with the parameters, the type of codebook vectors initialisation, the type of learning and the test must be chosen. 

The following commands are used to define the type of codebook vector initialisation :
.eveninit : put the same number of codebook vectors in each class
.propinit : put a number of codebook vectors in each class, which is proportionnal to the number of training faces in that particular class.

The following commands are used to define the type of learning
.olvq1 <runlen>, performs a learning of type olvq1 during <runlen> iterations
.lvq1 <runlen>, performs a learning of type olvq1 during <runlen> iterations
.lvq2 <runlen> <winlen>, performs a learning of type olvq2 during <runlen> iterations with a window of length <winlen>
.lvq3 <runlen> <winlen> <eps>, performs a learning of type olvq3 during <runlen> iterations with a window of length <winlen>, and an epsilon value of <eps>

several learning stages can be performed succesively.

The command .accuracy is used to test the classification.

The command .save <file_name> saves the codebook vectors in the file <file_name>.

The command 
.sammon <num> <itnum>
is used to « see » the learning. It performs a sammon projection of the codebook vectors into a 2D plane. The value <num> is the number of times this mapping has to be done during the next learning. The Sammon mapping is an iterative process. The value <itnum> is the number of times the iteration has to be executed.

A.1.3.3 Commands

Important
In version 1 of PCA the command’s names are defined as above. However, in the second version, no space are allowed between the two parts of the command name (e.g. instead of �.SAVE EIGENVECT use .SAVE_EIGENVECT). This remark is valid for every commands. 

Each command begins with a dot. 

.SAVE EIGENVECT <file_name> saves the principal components in the mac's full path name <file_name> (or the DOS file name). The file looks like a matrix where each column is a principal component. The dimension of the matrix is stored at the beginning of the file.

Example : 

4	3
1.25E-2	5.25E-3	2.25E-3
1.26E-2	5.15E-3	2.78E-3
1.25E-2	5.25E-3	2.25E-3
1.26E-2	5.15E-3	2.78E-3

This is a file containing 3 principal components, each containing 4 pixels. You can load this file from any spreadsheet application.

.SAVE EIGENFACE <file_name> saves each principal component in the ppm mac's full path name <file_name> (or DOS file name). So here the components are saved in an image file rather than in a matrix file.

.SAVE MEET <file_name> saves the components of the faces already met (by the [MEET] section) into the mac's full path name <file_name>.

.SAVE RECOGNITION <file_name> saves the components of the faces already met (by the [RECOGNITION] section) into the mac's full path name <file_name>.

.SAVE RECONSTRUCTION <file_name> saves the components of the faces already met (by the [RECONSTRUCTION] section) into the mac's full path name <file_name>.

.LOAD EIGEN <file_name> loads the principal components from matrix file saved with the .SAVE EIGENVECT command. If you modify the number of columns of the matrix (number 3 in the example above), PCA will load only the new number of principal components (which obviously must be less than the number of components saved). That is an easy way to examine the results of the method when the number of principal components is decreased.

.SAVE REPORT <file_name> simply saves the report into the mac full path name <file_name>.




A.1.3.4 EXAMPLES 

This is an example of Mac project file : 

[TRAINING 10]
Quadra 950::Sami Romdhani MSc:Face:Training:agj-01.ppm      agj
Quadra 950::Sami Romdhani MSc:Face:Training:al-01.ppm       al
Quadra 950::Sami Romdhani MSc:Face:Training:alr-01.ppm      alr
Quadra 950::Sami Romdhani MSc:Face:Training:ang-01.ppm      ang
Quadra 950::Sami Romdhani MSc:Face:Training:ar-01.ppm       ar
Quadra 950::Sami Romdhani MSc:Face:Training:bg-01.ppm       bg
Quadra 950::Sami Romdhani MSc:Face:Training:bim-01.ppm      bim
Quadra 950::Sami Romdhani MSc:Face:Training:ch-01.ppm       ch
Quadra 950::Sami Romdhani MSc:Face:Training:cjb-01.ppm      cjb
Quadra 950::Sami Romdhani MSc:Face:Training:dc-01.ppm       dc
Quadra 950::Sami Romdhani MSc:Face:Training:ecd-01.ppm      ecd
[END]

[RECOGNIZE R]
Quadra 950::Sami Romdhani MSc:Face:Training:ang-02.ppm      ang
Quadra 950::Sami Romdhani MSc:Face:Training:agj-02.ppm      agj
Quadra 950::Sami Romdhani MSc:Face:Training:ang-08.ppm      ang
Quadra 950::Sami Romdhani MSc:Face:Training:al-05.ppm       al
Quadra 950::Sami Romdhani MSc:Face:Training:ecd-05.ppm      ecd
Quadra 950::Sami Romdhani MSc:Face:Training:cjb-10.ppm      cjb
Quadra 950::Sami Romdhani MSc:Face:Training:dc-01.ppm       dc
Quadra 950::Sami Romdhani MSc:Face:Training:bg-03.ppm       bg
Quadra 950::Sami Romdhani MSc:Face:Training:ar-02.ppm       ar
Quadra 950::Sami Romdhani MSc:Face:Training:bim-04.ppm      bim
Quadra 950::Sami Romdhani MSc:Face:Training:ch-04.ppm       ch
[END]

.SAVE EIGENVECT Quadra 950::Sami Romdhani MSc:Face:EigenVect:T1

.SAVE REPORT Quadra 950::Sami Romdhani MSc:Face:Report:Test1.txt

The following example is an example of a PC project file performing a classification.

[TRAINING 10]
C:\FACE\NORMALIZ\TRAIN\AGJ-01.PPM		M
C:\FACE\NORMALIZ\TRAIN\AGJ-02.PPM		M
C:\FACE\NORMALIZ\TRAIN\AL-01.PPM		F
C:\FACE\NORMALIZ\TRAIN\AL-02.PPM		F
C:\FACE\NORMALIZ\TRAIN\ALR-01.PPM		F
C:\FACE\NORMALIZ\TRAIN\ALR-02.PPM		F
C:\FACE\NORMALIZ\TRAIN\ANG-02.PPM		F
C:\FACE\NORMALIZ\TRAIN\ANG-03.PPM		F
C:\FACE\NORMALIZ\TRAIN\AR-01.PPM		M
C:\FACE\NORMALIZ\TRAIN\AR-02.PPM		M
C:\FACE\NORMALIZ\TRAIN\BG-01.PPM		M
C:\FACE\NORMALIZ\TRAIN\BG-02.PPM		M
[END]

[CATEGORIZE]
.noc 9
.knn 3
.xdim 3
.ydim 3
.neigh gaussian
.topol rect
.seed 0
.alpha_type inverse_t
.radius 90
.alpha 0.3
.eveninit
.sammon 10 1
.olvq1 100
.sammon 100 2
.lvq3 1000 0.3 0.3
.save codebook.txt
.accuracy
C:\FACE\NORMALIZ\TRAIN\BG-10.PPM		M
C:\FACE\NORMALIZ\TESTEASY\BG-T-10.PPM	M
C:\FACE\NORMALIZ\TRAIN\AGJ-10.PPM		M
C:\FACE\NORMALIZ\TESTEASY\AGJ-T-10.PPM	M
C:\FACE\NORMALIZ\TRAIN\AR-10.PPM		M
C:\FACE\NORMALIZ\TESTEASY\AR-T-10.PPM	M
C:\FACE\NORMALIZ\TRAIN\AL-10.PPM		F
C:\FACE\NORMALIZ\TESTEASY\AL-T-10.PPM	F
C:\FACE\NORMALIZ\TRAIN\ALR-10.PPM		F
C:\FACE\NORMALIZ\TESTEASY\ALR-T-10.PPM	F
C:\FACE\NORMALIZ\TRAIN\ANG-10.PPM		F
C:\FACE\NORMALIZ\TESTEASY\ANG-T-10.PPM	F
[END]

.SAVE_REPORT C:\FACE\CATEGOR\TEST\cat.TXT

A.1.4 REPORT AND RESULTS

When PCA is computing it informs the user about its currently task. In the first example above, the results are : 

Loading project file : Quadra 950::Sami Romdhani MSc:Face:trial.pca
	Loading Training Set
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:agj-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:al-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:alr-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ang-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ar-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:bg-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:bim-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ch-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:cjb-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:dc-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ecd-01.ppm
	Training Set Loaded (11 Faces) done in 2s 800ms, 725.92 k used, 8.93 M contig. free mem., 8.95 M total free
	Building the Eigenvectors of the Auto-Associative Memory
	10 Eigenvectors computed done in 13s 183ms, 886.33 k used, 8.77 M contig. free mem., 8.80 M total free
	Loading Faces to be recognized
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ang-02.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:agj-02.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ang-08.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:al-05.ppm
		Cannot open the file, (error value=-43) done in 50ms, 949.16 k used, 8.73 M contig. free mem., 8.74 M total free
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ecd-05.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:cjb-10.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:dc-01.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:bg-03.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ar-02.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:bim-04.ppm
		Loading : Quadra 950::Sami Romdhani MSc:Face:Training:ch-04.ppm
	Recognition Set Loaded (10 Faces) done in 2s 333ms, 1.04 M used, 8.62 M contig. free mem., 8.63 M total free
	Trying to recognize people
		Y   ang recognized as ang
		Y   agj recognized as agj
		Y   ang recognized as ang
		Y   ecd recognized as ecd
		Y   cjb recognized as cjb
		Y   dc recognized as dc
		Y   bg recognized as bg
		WRONG RECOGNITION:   ar recognized as al
		WRONG RECOGNITION:   bim recognized as dc
		Y   ch recognized as ch
	Recognition done, On 10 faces 8 have been correctly recognized (80.0000 %) done in 23s 883ms, 1.19 M used, 8.46 M contig. free mem., 8.47 M total free
	Save the EigenVectors
		Saving : Quadra 950::Sami Romdhani MSc:Face:EigenVect:T1.txt
		Saved done in 27s 700ms, 1.19 M used, 8.46 M contig. free mem., 8.47 M total free
		Saving : Quadra 950::Sami Romdhani MSc:Face:EigenVect:T1EVal.txt
		Saved done in 333ms, 1.19 M used, 8.46 M contig. free mem., 8.47 M total free
	10 EigenVectors saved done in 28s 833ms, 1.19 M used, 8.46 M contig. free mem., 8.47 M total free
	Save the Report

Note that at the end of each sections, the report shows in how much time the section was executed, and how much memory was used. It shows also the recognition's results.

A.1.5 DATA FILES

PCA takes its data from PPM or PGM graphics files (Enhanced Portable Bitmap). This format has been developed to store 2D graphic files. However it can store any N Dimensional data. You may find useful to see in the appendix of this document the specification of the PPM and PGM file formats.

In PPM or PGM the 2-D data array is stored in rows and columns, but principal component analysis is applied to a vector of say N elements (in our case, N = number of pixel = number of rows * number of columns for 2-D images). Therefore in order to perform principal component analysis on an N-D data vector with this application, you must reform the elements of your vector into a 2-D array, and choose the number of rows and the number of columns.

�A.6 METHOD USED AND PERFORMANCE

In order to understand the method used to compute the principal components a brief insight should be done into the principal component analysis.

The L principal components are the first L eigenvectors of the covariance matrix W. So the aim is to compute the eigenvectors of W.

W is the covariance matrix or the auto-associative memory (whether the method is viewed from a statistical point of view or a neural network point of view).

W is the outer product of X which is the training set matrix. The outer product of one matrix is the product of this matrix with its transposed form.

The training set matrix is the matrix where the training vectors are placed (each training vector forms a column of X).

Lets P be the matrix of the first L eigenvectors (each eigenvector being a column of P). So, the aim is to calculate P.

To compute W and then P is too time consuming. Indeed, X is a N by K matrix (where N is the number of elements (pixel) in a vector (face)). And hence W is a N by N matrix. But N is far larger than K. For example, I use 300 faces, each face having a resolution of 64 by 64 pixels. So K = 300, and N = 64*64 = 4096.

Instead it is better to compute V the inner product of X. The inner product of one matrix is the product of the transposed form of this matrix by itself. So V is a K by K matrix.

It is can be shown that P = X * Q * E where :
Q is the eigenvector matrix of V 
E is the inverted square root diagonal matrix of the eigenvalues of V. 
The detailed proof of this result is given in very specialized (and highly enjoyable) books on linear algebra.

So that is the way PCA compute the principal components.

Lets F be the matrix of the components of the faces stored in the matrix X (the ith column of F forms the composnts of the ith column of X, which is a face). PCA computes F as follows : F = transpose(P) * X.

Lets Y be the reconstruction matrix from the components stored in the matrix F. PCA computes Y as follows : Y = P * F 
Note that Y = P * F = P * transpose(P) * X = W * X, so Y is the recall of the memory if X is its stimulus.

To compute the eigenvalues, the Householder and QL/QR algorithm have been used (from « Numerical Recipes in C » - The art of scientific computing" second ed. W.H. Press et al.).

So even with the improvement shown above, this method does a great amount of big matrices product, which is a time consuming operation. That explains why the recognition process is far away from the real time.
�
APPENDIX 2. PGM AND PPM FILE FORMAT

A.2.1 PGM

The portable graymap format (PGM) is a lowest common denominator grayscale file format. The definition is as follows:

A "magic number" for identifying the file type. A pgm file's magic number is the two characters "P2". 
Whitespace (blanks, TABs, CRs, LFs). 
A width, formatted as ASCII characters in decimal. 
Whitespace. 
A height, again in ASCII decimal. 
Whitespace. 
The maximum gray value, again in ASCII decimal. This value MUST be 255 
Whitespace. 
Width * height gray values, each in ASCII decimal, between 0 and the specified maximum value, separated by whitespace, starting at the top-left corner of the graymap, proceeding in normal English reading order. A value of 0 means black, and the maximum value means white. 
Characters from a "#" to the next end-of-line are ignored (comments). 
No line should be longer than 70 characters. 

Here is an example of a small graymap in this format: 

P2
# feep.pgm
24 7
255
0  0  0  0  0  0  0   0  0  0  0  0  0   0  0  0  0  0  0  0   0  0  0  0
0  3  3  3  3  0  0  77  7  7  7  0  0 111 11 11 11  0  0 215 15 15 15  0
0  3  0  0  0  0  0  77  0  0  0  0  0 111  0  0  0  0  0 215  0  0 15  0
0  3  3  3  0  0  0  77  7  7  0  0  0 111 11 11  0  0  0 215 15 15 15  0
0  3  0  0  0  0  0  77  0  0  0  0  0 111  0  0  0  0  0 215  0  0  0  0
0  3  0  0  0  0  0  77  7  7  7  0  0 111 11 11 11  0  0 215  0  0  0  0
0  0  0  0  0  0  0   0  0  0  0  0  0   0  0  0  0  0  0  0   0  0  0  0

A.2.2 PPM

The PPM format is a variation of the PGM format:

The "magic number" is "P5" instead of "P2". 
The gray values are stored as plain bytes, instead of ASCII decimal. 
No whitespace is allowed in the grays section, and only a single character of whitespace (typically a newline) is allowed after the maxval. 
The files are smaller and many times faster to read and write. So the user should prefer this one whenever he (or she) has the choice. 

This raw format can only be used for maxvals equal to 255.
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